Terry:

Hey everybody, and welcome to our final project presentation for SP studios for our
ParkinLot app. So first things first, we're going to go over some introductions, each of us
are going to introduce ourselves, just explain what we did for the project and what
experience we brought in to the project. My name is Terry Watson. I'm currently a
CSUB. Student. My experience that | brought to the project was in SQL, HTML and
PHP. The latter two | mostly learned during the project in terms of what | did for features
for the project, | worked a lot on the database implementations, specifically with triggers
for various features within the site. And then | also implemented reCAPTCHA, for the
front end for various different sites security.

David:

I'm David Montes De Oca. Coming into this project, | had some experience with transact
SQL, MySQL, basic web development, and some PHP. With this project, | mainly
worked on the back end and the database, as well as the algorithm we use for the
parking spot trading.

Abraham:
My name is Abraham, | have experience with HTML, CSS, JavaScript, some Ul and UX
design as well. And | was responsible for the front end and the design of the app.

Tony:

Hi, everyone. I'm Tony Cervantes. For this project. I'm the person that was mostly in
charge of general project overview. So making sure everyone was working on what they
were supposed to, and essentially pushing their updates to our GitHub repository.
Thankfully, I've already had experience with most of the things we were going to be
using, thanks to our web development two course. And that included things like PHP,
Maria database, or MySQL, as well as general HTML and JavaScript coding. So for the
idea of this project, | came up with this project, essentially, about three to four semesters
ago, one of my classes would begin around 11am; So | would get to campus by 10:40.
And one of these days that | was looking for a parking spot, | found a yellow vehicle,
kind of like a dune buggy or a little Jeep. And essentially, | was able to take that person's
spot for that day. Thanks to our schedules usually being like monday, wednesday or
Tuesday, Thursdays, it seemed that every time my class that started at 11 was the same
time when | assume his class ended around 10:30. Or he just decided to leave every
single time around the same time, | would just wait right behind his vehicle until the
vehicles owner came and drove off and left. So essentially, | just started taking his spot
every single time my class was gonna start. And this worked out throughout essentially
the whole semester. So this started making me think if there was already an application
that exists that facilitates this trade off, where it's peer to peer or anything similar. It
doesn't seem like there was so this is where our project began.

Terry:

Hey, it's me, again, we're gonna go over what's the problem that we're trying to address
now. So here we have a map of CSUB. All these gray boxes are the various different
parking lots that are available to students and faculty on campus. As you can see,
there's quite a few different parking lots. So really, there should be no issue with people
having enough space. But majority of the reason why there's an issue with parking is
that whenever somebody is leaving, it's it's always difficult for somebody who's trying to
arrive to be in the right place at the right time to get that spot. We as CSUB students
and faculty all have a pretty bad time trying to park at the university. This is especially
true during peak times. And also peak times of the year like final weeks and stuff like
that. Whenever there's a lot of people on campus trying to park and leave
simultaneously, it always creates a lot of chaos with a lot of people looping around
through the parking lots, creating lots of traffic, lots of stress.

David:

To solve the problem that Terry described earlier, we created the application ParkinLot .
So ParkInLot is essentially a tool that allows users to trade parking spots with one
another. This uses a token based system just so we can ensure that people do not
abuse the app. And ultimately, it just helps save stress and time.

So users will start off by registering for an account. And once they log in, they will have
the option to either find a spot or give out a spot and when a user offers up a spot, their
spot will be entered into our database and it will be ready to be paired with a requester.
And once a requester is found, they will be shown the details as you can see there of
the requesters car just to make the transaction a bit easier. Users who request a spot
will be entered into our spot queuing algorithm. And once a match is found, they will be
also given details for the trade. The users will also be given a complete button just to
indicate when the spot trade is complete. And once this trade is complete, tokens will be
exchanged, so the offer will gain a token and the requester will spend one of their
tokens and ultimately these tokens will help keep the system fair and ensure that these
users do not abuse the app, and they will need to offer up spots in order to be able to
request spots in the future. Lastly, we implemented a map that automatically zooms in
as you drive closer to the spot. Generally, this will be more useful once you're near
campus and can actually see the parking spots clearly. This makes it easier for the
requester to actually find the parking spot and will help us provide users with a better
experience.

Terry:

But now I'm going to talk about our competition. In terms of direct competition, we don't
have any. But there are some similar applications out there. These are pavement, Park,
mobile and park stash. All three of these apps are much more similar to renting a
parking space from its direct owner and things like Park driveways, and private parking
lots. The problem with this is it can't be adapted to any parking lot unless monitoring

systems are in place. So things like cameras or meters so that the people who own the
parking spaces are actually able to judge whether or not somebody is there. Another
important distinction is that our application is free to use. And it's much more geared
toward trading and peer to peer use.

Now I'm gonna go over the management style that we used. We used a combination of
extreme programming and Scrum, both of which are agile methods. The reason why we
switched over to Scrum halfway through our project is because this is all been online.
And the scrum format is much more usable online, than extreme programming, which
requires like pair programming and things like that. By using Scrum, we were able to
just meet up whenever times called for it. And we could get a lot of work done that way
individually.

Tony:

Okay, so now let's talk about our overall architecture. Essentially, our whole web
application's foundation is coded in HTML and JavaScript, with CSS handling all of the
styling. We used Odin's Maria DB to host all of our content's tables, which is from users
to spots as well as using Odin itself to host our site. In order to access content from our
database and display it onto their appropriate pages, PHP handles most of the static
content. That which appears upon accessing a specific page that isn't going to be
changed in real time immediately. For our algorithm, which is where we do need content
to be updated almost immediately. And without having the page as a whole refresh, we
used Ajax to handle the real time content acquisition. In terms of our external resources.
We had Imgur's API, which allowed us to save our users vehicle pictures onto their own
servers. And that way, the only thing being saved within our server is the link to those
external images, as well as two different Google API's, which would be for their maps as
well as reCAPTCHA.

Terry:

Now I'm going to go over the work plan that we had for semester one. In semester one,
we focus mainly on the foundation and the groundwork for setting up the project and
getting it operational. For about three to four weeks, we spent that creating the
database for the users profile, house it attributes. This is all located in the users table on
the database. For about three to five weeks, we moved on to creating a basic web view
for signing in and signing up. For the last three weeks, we focused on implementing
more options for the front end view. This includes adding more admin views. So being
able to access database information as an admin.

Now I'm gonna move on to the work plan for semester two, semester two was definitely
a lot higher workload than semester one or the first three to four weeks, we focused on

getting the spot queue database tables operational. This includes things like the actual

spots table itself, and all of the necessary attributes added to that table to facilitate spot
trades. For four weeks after that, we focused on getting the front end view for spot

queuing and trading actually working that was handled almost exclusively by David for
two to three weeks that we focused on getting the token system properly working and
other various triggers working on the database that was all handled by me, Terry. For
two weeks after that, it was primarily focused on getting alternative views for the
different roles. This includes employees, users and administrators that was all handled
by Tony for the last three to four weeks, we focus really heavily on the front end view for
Google Maps. This allows users to see the location of the trade partners. And then we
also focused really heavily on various chase goals. This is primarily styling and in
improving the readability of the website.

David:

So now we're moving on to the features that we all completed individually. | first focused
on implementing photo upload so that users can add a picture of their vehicle to their
profiles, and | used the Imgur API to store and fetch these uploads pretty easily. | also
implemented a password hashing and sanitation feature to securely store users
passwords and other input data using the password hash function in PHP as well as the
bind param function. So these two features are really important just to help protect our
database from potential SQL injection as well as protecting the user's information. The
next feature | completed was the parking spot requests. Users are able to request
parking spots be paired with an offeror, and then there'll be provided with details on the
parking spot in order to complete the trade. | implemented this feature along with a few
others using Ajax, PHP and JavaScript. So similar to the request feature, the offer
feature will give users the ability to offer their spots be paired with the requester and be
provided with the details in order to complete the spot trade. And lastly, | implemented a
spot queuing algorithm just to ensure that the requesters and offers are matched based
on availability, location and time. To do this, | used Ajax calls to continuously get
updates from our database. This then allows us to update and display the parking spot's
availability and status accordingly. Both users are shown updates once the status of the
parking spot changes, just to help make the transaction simple and straightforward.

Terry:

Now moving on to the features | completed. throughout the project, | mainly worked on
three things the reCAPTCHA for the site and also a lot of the database implementation.
When | chose the reCAPTCHA, it was out of two potential features we were considering
to implement for added security. They were two factor authentication and reCAPTCHA. |
eventually decided on reCAPTCHA because while our site does have user profiles, and
we want them to be secure, it doesn't necessarily have any super important user
information. The most personal information our website houses for users as their car
info down to the last four digits of their license plates and their names. Rather than
implement two factor authentification to improve account security, | decided on
reCAPTCHA to improve database slash site resource security. | implemented the
captchas on three different pages register, forgot username, and forgot password. This
means that malicious users can't create bots that spam our database with fake accounts

and also can't use our email service to spam other people's emails under our name.
Moving on to what | implemented for the database, | created the table used to contain
spots that are currently being swapped, and also the table called spots history that
contains all the spots that have been deleted by the spot trading implemented by David.
Beyond that, | implemented several cascading triggers in the database that handle all
the various bookkeeping. As soon as a spot is deleted, depending on the conditions it
was deleted in all the token handling, rating updates, and history keeping is done using
this set of triggers. | did this in order to remove the dependency on users clients issuing
SQL queries to the database to make it less likely for database errors to occur.
Essentially, all we rely on is the users hitting complete slash cancel and then the Delete
query going through from their client. This is opposed to issuing every update query
through the client using PHP, which would mean that if the client lost connection halfway
through completing a trade, a small piece of the completion might not occur, such as
token gain or loss or rating updating overall, this just prevents spa trading from being
manipulated by users to keep tokens or otherwise tamper with the trade by intentionally
disconnecting. There are some images here on the slide. On the left side, we have the
captcha. This is for our account creation. It's essentially just reCAPTCHA. Using Google
API. On the right we have a little diagram showing how a user completes a spot and
how the different triggers initiate. So essentially, as soon as a user completes or cancels
the spot, the update token triggers. This distributes tokens to the people who offered a
spot and takes away tokens from the people who requested them, but only if the spot
was completed correctly.

Tony:

Moving on to the features that | completed. First thing first was user registration. Of
course, this would allow any user to create and register an account with our application,
as well as make their user profile. Right after that | started working on profile update.
This would allow users to update their profile with maybe requesting a new username
change, changing their first and last name if they got married or something as such, as
well as update their vehicle's information if they happen to buy a new car or just started
using a different vehicle. Thanks to the help of David, we were able to also implement
uploading a new picture and having that refresh and automatically, in real time show the
new picture upon submission. The next thing was administrator database table views
essentially without having to sign into our database through the service side every
single time, you can view everything that is contained within our database within the
application itself. So long as you weren't a normal user. You would have to be either an
administrator or just a normal employee. For forgot username, a user can sign into our
web application either using their email address or their username, but in the event that
they don't want to use their email address and insist on trying to find their username,
they can always request their username be sent to them. Just as well with our password
reset page, when a user enters their email address into the text field, if that matches an
email within our database, it's going to send that specific email a unique token that gets
generated. With that token, the user will have five minutes to be able to reset their

password. Lastly would be our geolocation map when a user gets paired with the
parking spot, a map will show them where their lot is, and it will begin zooming in the
closer you get to that spot, which is going to help the user find the parking spot that was
assigned to them.

Abraham:

So for the design of the app, | started off by first making some rough sketches on paper.
And then after that, | used Adobe XD to create a few different prototypes of how the app
would look. And during this time, | also designed the logo for the app. And | tried a ton
of different versions before finally setting on the one we have. But after this, | used CSS.
And | used bootstrap to create the grid layout for the app. And | decided to go with a
mobile first approach, since this is primarily meant to be a mobile app. And because it
would also make development easier since we could just use the desktop version for
any like testing or whatever we have to do, and not really have to worry too much about
making sure it looks good on mobile. For the design of the app, | decided to go with a
dark theme, because it's easier on the eyes. For the other elements like the buttons and
the order of layouts, my main priority with the design was to make sure that it was as
straightforward as possible and easy to use. And | made sure that there was a clear
hierarchy of elements, like for example, in the card that shows up when you're paired
with someone, there's a clear separation between like the account info and the two
different buttons. And | wanted to do that. So there wouldn't be too much confusion
about how to use the app as because | just wanted to make sure that it was as clean
and intuitive as possible. That way it's easier for people to use and more likely for
people to use, and just minimize frustration with it as much as possible. So yeah, that's
what | did for the design of the app.

David:

So now I'm going to go over a few challenges that we faced while implementing these
features. First one, | was working on the photo upload feature, | started off with a PHP
script. | was trying to write my own script to upload these photos into a folder in our
directory on Odin. But ultimately, that didn't work because of some permission errors.
And | ended up using the Imgur API instead. That ended up being pretty easy to
implement and a lot quicker to retrieve and upload folders. Next, | had a couple issues
with the spot queue algorithm at first, just learning how to use Ajax to send and retrieve
data from the server. That was a challenge in itself. And also just getting both requester
and offeror spots working together was quite a big challenge.

Tony:

The next set of challenges we face was with geolocation mapping. Essentially, the issue
was how do we transfer our database content into our JavaScript that way Google Maps
API can automatically adjust properly. Once we figured that out, the next set of issues
were how to show the markers appearing for both the requests that you were matched
with as well as with your current position. When we got it all working, it seemed to be

perfectly fine until you started driving towards the location, it would add up markers. So
essentially, it would start leaving a trail of markers behind you as you moved. This was
then fixed with the help of David by making a global variable that would just clear it upon
setting your current position again. The other one is password reset. This was
challenging because most of the guides or just any article | found online had at
minimum three pages. So luckily, eventually, | was able to condense this into a single
page to generate the user's unique token, as well as use Odin server email server to be
able to send the user an email with that link with the token in a get request. And in terms
of security, the token expires within five minutes so that someone doesn't try to access
the token later on or try to spoof it and essentially change a user's password. The last
one would be SQL triggers. Terry was having issues implementing this or getting it to
work perfectly, just because of how many different times we access our database when
trying to match a user with their spot as well as removing the tokens. But eventually,
Terry was able to figure out how to get properly set up on their triggers. That way, when
a user's spot request gets deleted, it removes or adds tokens appropriately to the user's
account.

David:

As we were implementing some features we noticed we had to make a few changes,
the first of which was scrapping an old timer idea that we had this idea essentially didn't
work because they required the poster to post their spot before they were even at their
vehicle. And this ultimately would have caused issues with the geolocation feature that
we implemented. The next feature that we had to change was the geolocation map
itself. We made it so that the users would need to request a spot when they were within
a certain radius from campus, just so we can ensure that these transactions are quicker.
And this also caused us to no longer need a GPS navigation for the requester. And
lastly, we wanted to add a rating system, which required the use of triggers in our SQL
database, just so users can know who is reliable.

Abraham:

Now, to recap, how is this going to help people? Well, it's going to help people by saving
them a lot of stress, like not having to worry about, oh, how early do | need to leave for
school because | may not be able to find parking, and it's gonna save them a lot of time.
So they don't have to drive all over campus in circles, just trying to find a spot
somewhere. And | think it just, it's gonna help a lot of people, especially during like the
busiest hours at school. So what did we learn with this app, we learned a lot of web
design like PHP, HTML, CSS, we learned algorithm analysis, and we learned how to
implement databases into PHP to use on the web and to store and collect data.

Tony:

And now for our future plans, the first one being adding timers for both the requester
and the poster. This way, let's say that someone posts their parking spot during non

peak times, and no one accepts their spot or no one gets paired up. In this case, the

poster is out of luck, because they're not going to be able to get their token back. So in
this case, we would add a timer for about five minutes. That way, if five minutes passed,
the poster no longer has to remain at their parking spot and can leave with no worries,
of not getting a token. This way, the spot gets deleted, and their token is allocated. As
well as, this will protect the requesters so that after those five minutes, as soon as the
poster has left, that parking spot is no longer available, so someone doesn't end up
getting paired with it much later in the day. And now that spots no longer guaranteed As
well for the requester, so in this case, the requester would have about five minutes to
reach their destination to their parking spot. That way that gives ample time for them to
arrive. And that way the poster isn't waiting too long for the person to arrive to their spot.
As well as if that timer was to expire again, the requester would then be notified that that
parking spot is no longer guaranteed. So they can choose to find a new one or just
cancel the request or the matching in general. Our additional future plan would be
expandability. At the moment, our application is geared more specifically toward CSUB
more as a test case. So in the future, we can end up making this application be
adaptable to every single type of CSU or UC system, where parking might be issues as
well as potential stadiums or other type of concerts and events where parking might not
be guaranteed or as easily available for users. So this is where we'll have to implement
and how to be able to choose locations based on where you're at or where you're
planning to park as well, in general, just expanding our app to multiple different venues.

And now on to our demo, starting with Abraham showing us the registration page.

Abraham:

Then we are going to put in our information. So I'm gonna put in my name, last name,
create a username, enter your email, aldana, just gunna put this. Password - I'm just
going to put p a s s. Then you put in your car information. So | have a Honda Civic,
2014. I'm just going to put in some random numbers here. And color, | have a red car,
then you just click | am not a robot here to complete the captcha and then create
account. Now to upload an image of the car, you're just gonna click Choose File and
click your image. And there we go, upload. And it's up. Now to login. You just put in your
email or username, and then the password and login.

Terry:

Hey, everybody, this is Terry. I'm just going to be demoing our forgot username and for
that password for you. When you're navigating to the Forgot username section, you're
asked for an email and then also presented with a recapture. If you simply put it in email
and don't complete the recapture when you hit submit, it won't actually send any kind of
email. You won't receive any kind of notification or anything like that. That's to prevent
malicious users from using our email services for, well bad things, obviously, I'm just
gonna go ahead and complete the reCAPTCHA. We're gonna see if we're able to get an
email, you're prompted with a little notification, just letting you know that an email has
been sent to your email address. We should see something pop up anytime now. There

it is. So, on the email side, you'll just get a little message chain. Hey, if you forgot your
username, this is your username. Now that you have it, you're able to log in. On our
website, you're also able to log in with just your email. But this is just in case people
want their username to be able to log in later on.

Now I'm going to move on to the Forgot Password section, it works much the same, it's
essentially the same concept. Once again, if you don't fill out the reCAPTCHA, it's not
going to send you any kind of email, or any kind of reset link or anything like that. But if
you do fill out the reCAPTCHA, it's gonna give you another prompt just letting you know,
hey, we're gonna send you an email for that. Button refresh, this is the email that you
get for the password reset. It also prompts you that if you didn't request for this
password reset, you should go and change your password on your account. Because
that means somebody is trying to get into your account, obviously, to be able to reset it,
you just go and hit reset, this is going to give you the new reset. So we'll just reset it to
something like one of my used passwords. Password has been successfully changed,
go ahead and try to log in. So we'll try to just go ahead and log in really quickly. And just
like that are able to access the website once again.

David:

Okay, so now we're going to demo the parking spot trade feature that we have
implemented. So when | click find a spot as the requester, it will take me to another
page that'll enter me into a parking spot request queue. And it'll be continuously
searching for available spots in the database. And once a spot becomes available, it'll
pair me. And | believe Tony is on the other end, about to offer up a spot.

Tony:
So let's say in this case, I'm about to leave campus and | no longer need my parking
spot so | can give it up so | can get a token back. If that is | ended up using it that day.

So in this case, I'll select the button that says give a spot and as you can see, it says
that | am not yet offering a parking spot. So | just have to choose whichever lot we
belong or | am currently parking so let's choose lot F. Then I'm going to select offer my
spot and as you can see, it says my spot has been posted.

David:

So now, both of our pages should have updated as they're both continuously checking
for your parking spot matches. I'm shown with a few details of Tony's car, such as the
color, model, make, and year, as well as the license plate digits at the end. So when |
click on the View Details button, it will take me to another page where it'll allow me to
share my location. It'll give me Tony's details, as well. And if | scroll down, it'll also show
me their parking spot location. Generally, this is more useful once we're actually near
the parking lot that we're trying to reach. But for right now, it zooms in once we get
closer to the destination.

Tony:

And then on my site, let's say that for some reason, | end up going to the previous page
or the page just closes out, times out or anything like that. If | was to go ahead and
select the give a spot again, it would already show that I'm currently matched - which in
this case, it would take me back to the page where it shows the person that | was
matched with. And it's essentially at this point waiting for the requester to confirm
whether or not they got the spot.

David:

And so once | go ahead and click Complete the trade, it'll basically exchange the tokens
between me and Tony. | will lose a token since I've just requested a spot and Tony
should gain a token onto his account. As you can see here, | started off with two tokens
when | logged in, and now | currently have one.

Tony:

And on my screen you can see that the trade has been completed. So if | go back to the
homepage, | started off with 10. And now | have 11. And with all the demos of our
application that concludes our video. Thanks for watching.

