
Integer Factorization Problem

An Attack on the RSA Public-Key Encryption

Scheme
Maria Chumpitaz, Chad Cole, Haley Hamer, Alisa Iduma, Lucero Morales

Advisor: Dr. Charles Lam Assistant: Frank Madrid

Partial support for this work was provided by the National

Science Foundation’s Federal Cyber Service: Scholarship for

Service (SFS) program under Award No. 1241636.
Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the views of the

National Science Foundation.

Introduction:
RSA is one of the encryption systems that depend upon the complexity of the integer

factorization problem to prevent an unwelcomed third party from decoding the

message. The function of this system involves a public key (n,e), n being a product of

two large prime numbers that are not easily factored and e being a random number

between 1 and Фn, and a private key (d), which can be found using the formula:

𝑒 × 𝑑 ≡ 1 𝑚𝑜𝑑 Ф𝑛 . For example, Alice creates a public and private key, then she

makes the public key available to anyone who wants to send her a message. Once

Alice gets an encrypted message back, only she is able to decrypt it with the private

key. However if an eavesdropper, Eve, is able to factor n then she could possibly find

the private key d by using the previous formula, then plug d into 𝑚′ = 𝑐𝑑 𝑚𝑜𝑑 𝑛 , m’
being the decrypted message and c being the encrypted message.

Background:
Three possible ways to break the RSA algorithm are Trial Division, Pollard’s Rho

Algorithm, and Pollard’s p-1 Factoring Algorithm. Trial division factors smaller

numbers (less than one million) and does not work well with semi primes because

they can be fairly large numbers. The Pollard Rho Algorithm allows the division

process to be much quicker and allows the possibility of finding the two numbers that

divide into a composite number. Pollard’s p-1 Factoring Algorithm finds prime factors

p by dealing with p-1. Each of the algorithms are efficient in certain cases.

Method & Data:
*The computer program Maple16 was used to find the calculations..

*The computer generates two random prime integers between the interval 2𝑖 . . 2𝑖+1. Then the algorithm multiplies these two primes

together to create n. Next, the algorithm tries to factor the n back into the two random primes p and q.

Trial Division

Trial division worked extremely fast for very small numbers. It depends on the

factorization of the smallest primes, and it divides the number by the next prime until

it works and is fully factored. According to the data gathered, the time grows

exponentially as the bits increased. So with larger numbers, the time taken will

increase greatly between two consecutive bits.

Pollard’s Rho Algorithm

In order to factor numbers, there are easier ways to factor than just dividing by the

smaller prime numbers such as 2, 3, and 5 like trial division. Once the numbers begin

to get larger, this becomes a lengthy and time consuming process. The Pollard Rho

Algorithm allows the division process to be much quicker and allows the possibility of

finding two numbers that can divide into the number. Based on the data obtained, the

time increased as the numbers became larger. If one were to test further, one would

expect the difference in time, between two consecutive numbers, to be even more

drastic.

Pollard’s p-1 Factoring Algorithm

Pollard’s p-1 Factoring Algorithm is effective, but not to the extent that the Rho

Algorithm is because of the complexity of the calculating process that this algorithm

undergoes. All of the numbers tested in the data above were successfully factored,

and longer numbers did result in a longer run time. Based on the data collected, as

the bits get larger, the time it will take to break the numbers will grow at a steadily

increasing rate. At the beginning it is reasonably slow, however, as the number

grows, this algorithm becomes more useful as it is intended for a certain range of

numbers.

Conclusion:
Trial division worked well for smaller numbers but became extremely time consuming

for large numbers. Pollard’s p-1 Factoring Algorithm was moderately better than trial

division, however, as the numbers became even larger, it, too, took more time.

Overall, Pollard’s Rho Algorithm was the fastest and most effective method out of the

three tested. Even though the algorithm was able to factor reasonably large numbers,

there is a point where the value of n could become so large that no method could

factor the number fast enough to crack the code for Eve before it becomes useless.

Future Work:
Aside from the algorithms researched in this project, there are many different

methods that are more complex that can be used to solve the integer factorization

problem faster. These include but are not limited to: elliptic curve factoring, random

square factoring methods, quadratic sieve factoring, and number field sieve factoring.

Random square factoring method finds the factors by finding the congruence of

squared modulo of n, however, it has not been completely developed. The quadratic

sieve factoring method is one of the faster ways to factor and is similar to the random

square factoring method except it requires large amounts of memory. The

recommended size for RSA is 4096- bits, basic unit of information, because it would

take an eavesdropper years to crack. Therefore, people with adequate resources

could further explore this method.

References:
1. "Courses: Sriram Sankaranarayanan." A Quick Tutorial on Pollard's Rho Algorithm

[]. N.p., n.d. Web. 29 July 2014.

2. "Eavesdrop Stock Illustrations." Eavesdrop Stock Illustrations. N.p., n.d. Web. 04

Aug. 2014.

3. Menezes, A. J., Van Oorschot Paul C., and Scott A. Vanstone. Handbook of

Applied Cryptography. Boca Raton: CRC, 1997. Print.

4. “Pictures Of..." A Young Boy Working On A Computer. N.p., n.d. Web. 04 Aug.

2014.

5. "Record 232-digit Number from Cryptography Challenge Factored | Observations,

Scientific American Blog Network." Scientific American Global RSS. N.p., n.d.

Web. 04 Aug. 2014.

6. "RSA Key Sizes: 2048 or 4096 Bits?" Welcome. N.p., 18 June 2013. Web. 05 Aug.

2014.

7. "Stock Photography and Stock Footage." Clipart of Two Women Talking through

Tin Cans Jba0871. N.p., n.d. Web. 04 Aug. 2014.

8. "Incrementando La Productividad. Utilizando MÃºltiples Monitores."

Incrementando La Productividad. N.p., n.d. Web. 06 Aug. 2014.

Department

of

Mathematics

Trial Division (1000 runs)

Size(bits) Time(s) Time per

run(s)

0 0.062 0.00062

1 0.327 0.000343

2 1.591 0.0015974

3 3.385 0.0035412

4 8.985 0.0091666

5 20.217 0.0206574

6 41.839 0.0424666

7 89.030 0.09039

8 182.022 0.1849202

9 359.239 0.3694976

10 736.029 0.7393542

Pollard’s p-1 (100 runs)

Size(bits) Time (s) Time per run(s)

0 0 0

1 .124 .00124

2 .202 .00202

3 .250 .00250

4 .343 .00343

5 .468 .00468

6 .468 .00468

7 1.185 .01185

8 1.123 .01123

9 1.170 .01170

10 1.966 .01966

11 4.353 .04353

12 6.536 .06536

13 6.927 .06927

14 14.399 .14399

15 21.450 .21450

16 34.117 .34117

17 50.981 .50981

18 129.902 1.29902

19 214.829 2.14829

20 247.855 2.47855

Pollard Rho’s Algorithm (1000 runs)

Size(bits) Time(s) Time per run(s)

0 .078 .000078

1 .109 .0001218

2 .110 .0000968

3 .203 .0002214

4 .234 .000231

5 .515 .000312

6 .328 .000365

7 .500 .000499

8 .842 .0008922

9 1.180 .0012386

10 1.638 .0015694

11 1.950 .002081
12 3.198 .0032324
13 4.430 .0043898
14 6.396 .0066052
15 9.173 .0093162
16 13.213 .0136
17 19.531 .0192444
18 27.035 .0269786
19 39.062 .0389348
20 54.726 .055633
21 77.922 .0786558
22 106.549 .1116748
23 154.335 .1565498
24 208.979 .21477433
25 295.996 .304534
26 440.126 .43169233
27 597.390 .6116485
28 890.127 .8772565
29 1223.781 1.232044
30 1744.263 1.748438

