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Introduction: 
RSA is one of the encryption systems that depend upon the complexity of the integer 

factorization problem to prevent an unwelcomed third party from decoding the 

message. The function of this system involves a public key (n,e), n being a product of 

two large prime numbers that are not easily factored and e being a random number 

between 1 and Фn, and a private key (d), which can be found using the formula: 

𝑒 × 𝑑 ≡ 1 𝑚𝑜𝑑 Ф𝑛 . For example, Alice creates a public and private key, then she 

makes the public key available to anyone who wants to send her a message. Once 

Alice gets an encrypted message back, only she is able to decrypt it with the private 

key. However if an eavesdropper, Eve, is able to factor n then she could possibly find 

the private key d by using the previous formula, then plug d into  𝑚′ = 𝑐𝑑 𝑚𝑜𝑑 𝑛 , m’  
being the decrypted message and c being the encrypted message. 

 

 

 

Background: 
Three possible ways to break the RSA algorithm are Trial Division, Pollard’s Rho 

Algorithm, and Pollard’s p-1 Factoring Algorithm. Trial division factors smaller 

numbers (less than one million) and does not work well with semi primes because 

they can be fairly large numbers. The Pollard Rho Algorithm allows the division 

process to be much quicker and allows the possibility of finding the two numbers that 

divide into a composite number. Pollard’s p-1 Factoring Algorithm finds prime factors 

p by dealing with p-1. Each of the algorithms are efficient in certain cases. 

 

Method & Data: 
*The computer program Maple16 was used to find the calculations.. 

*The computer generates two random prime integers between the interval 2𝑖 . . 2𝑖+1. Then the algorithm multiplies these two primes 

together to create n. Next, the algorithm tries to factor the n back into the two random primes p and q.  

 

Trial Division 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trial division worked extremely fast for very small numbers. It depends on the 

factorization of the smallest primes, and it divides the number by the next prime until 

it works and is fully factored. According to the data gathered, the time grows 

exponentially as the bits increased. So with larger numbers, the time taken will 

increase greatly between two consecutive bits. 

 

Pollard’s Rho Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to factor numbers, there are easier ways to factor than just dividing by the 

smaller prime numbers such as 2, 3, and 5 like trial division. Once the numbers begin 

to get larger, this becomes a lengthy and time consuming process. The Pollard Rho 

Algorithm allows the division process to be much quicker and allows the possibility of 

finding two numbers that can divide into the number. Based on the data obtained, the 

time increased as the numbers became larger. If one were to test further, one would 

expect  the difference in time, between two consecutive numbers, to be even more 

drastic. 

Pollard’s p-1 Factoring Algorithm 

 

 

 

 

Pollard’s p-1 Factoring Algorithm is effective, but not to the extent that the Rho 

Algorithm is because of the complexity of the calculating process that this algorithm 

undergoes. All of the numbers tested in the data above were successfully factored, 

and longer numbers did result in a longer run time. Based on the data collected, as 

the bits get larger, the time it will take to break the numbers will grow at a steadily 

increasing rate. At the beginning it is reasonably slow, however, as the number  

grows, this algorithm becomes more useful as it is intended for a certain range of 

numbers. 

 

 

 

Conclusion: 
Trial division worked well for smaller numbers but became extremely time consuming 

for large numbers. Pollard’s p-1 Factoring Algorithm was moderately better than trial 

division, however, as the numbers became even larger, it, too, took more time. 

Overall, Pollard’s Rho Algorithm was the fastest and most effective method out of the 

three tested. Even though the algorithm was able to factor reasonably large numbers, 

there is a point where the value of n could become so large that no method could 

factor the number fast enough to crack the code for Eve before it becomes useless. 

Future Work: 
Aside from the algorithms researched in this project, there are many different 

methods that are more complex that can be used to solve the integer factorization 

problem faster. These include but are not limited to: elliptic curve factoring, random 

square factoring methods, quadratic sieve factoring, and number field sieve factoring. 

Random square factoring method finds the factors by finding the congruence of 

squared modulo of n, however, it has not been completely developed. The quadratic 

sieve factoring method is one of the faster ways to factor and is similar to the random 

square factoring method except it requires large amounts of memory. The 

recommended size for RSA is 4096- bits, basic unit of information, because it would 

take an eavesdropper years to crack. Therefore, people with adequate resources 

could further explore this method. 
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Trial Division (1000 runs) 

Size(bits) Time(s) Time per 

run(s) 

0 0.062 0.00062 

1 0.327 0.000343 

2 1.591 0.0015974 

3 3.385 0.0035412 

4 8.985 0.0091666 

5 20.217 0.0206574 

6 41.839 0.0424666 

7 89.030 0.09039 

8 182.022 0.1849202 

9 359.239 0.3694976 

10 736.029 0.7393542 

Pollard’s p-1  (100 runs) 

Size(bits) Time (s) Time per run(s) 

0 0 0 

1 .124 .00124 

2 .202 .00202 

3 .250 .00250 

4 .343 .00343 

5 .468 .00468 

6 .468 .00468 

7 1.185 .01185 

8 1.123 .01123 

9 1.170 .01170 

10 1.966 .01966 

11 4.353 .04353 

12 6.536 .06536 

13 6.927 .06927 

14 14.399 .14399 

15 21.450 .21450 

16 34.117 .34117 

17 50.981 .50981 

18 129.902 1.29902 

19 214.829 2.14829 

20 247.855 2.47855 

Pollard Rho’s Algorithm (1000 runs) 

Size(bits) Time(s) Time per run(s) 

0 .078 .000078 

1 .109 .0001218 

2 .110 .0000968 

3 .203 .0002214 

4 .234 .000231 

5 .515 .000312 

6 .328 .000365 

7 .500 .000499 

8 .842 .0008922 

9 1.180 .0012386 

10 1.638 .0015694 

11 1.950 .002081 
12 3.198 .0032324 
13 4.430 .0043898 
14 6.396 .0066052 
15 9.173 .0093162 
16 13.213 .0136 
17 19.531 .0192444 
18 27.035 .0269786 
19 39.062 .0389348 
20 54.726 .055633 
21 77.922 .0786558 
22 106.549 .1116748 
23 154.335 .1565498 
24 208.979 .21477433 
25 295.996 .304534 
26 440.126 .43169233 
27 597.390 .6116485 
28 890.127 .8772565 
29 1223.781 1.232044 
30 1744.263 1.748438 


