Before you start, in the text mode, enter

Your name
Date

Then, switch to math mode, enter

> with(student):with(plots):with(numtheory):

to load the student, plots and numtheory packages.

The while loop

In Lab 1, we tried to find the first integer with more than 6 divisors, and we used a for loop to achieve the task, when we break the loop once a number reaches more than 6 divisors. However, if say, we need to find the first number that has 50 factors, how should we specify the for loop? How far do we need to go?

Such a problem can be solved by using the while loop instead. Consider the same problem using the for loop:

> for i from 1 to 60 do
 if tau(i)>6 then print(i); break;
 else continue;
 fi;
od;

And now, the while loop can be written as follows:

> i:=0;
 while(true) do
 i:=i+1;
 if(tau(i)>6) then break; fi;
 od:
 print(i);

In this while loop, we break when i has more than 6 divisors. Note that in every run of the loop (in between while.. do .. od) that the value of i is incremented by 1 (by the line i:=i+1). At the end of the loop, when a value is found, we print the value that breaks the loop by using the print command. Also note that the initial condition i:=0; is absolutely essential to tell Maple where the starting point for i should be.

Another way to write this while loop is as follows:
\[
\begin{align*}
\text{while}(\tau(i) \leq 6) \text{ do} \\
\quad & i := i + 1; \\
\text{od:} \\
\text{print}(i);
\end{align*}
\]

Note the difference here is that we put the condition to continue running after the keyword \textbf{while}. Hence, the value of \(i\) keeps on incrementing (inside the loop) until the condition \(\tau(i) \leq 6\) is not true anymore, that is, when \(\tau(i) > 6\). In other words, we are putting in the negation of the break condition in the \textbf{while(…)}

Exercises:

(1) Write the two while loops from above. Can you explain the difference between the initial condition \(i := 0;\) and \(i := 1;\) in the two different loops? (Note: they do not change the computations involved, but there is a subtle difference why the first loop starts at 0 and the second one starts at 1)

(2) Write a \textbf{while} loop to find the smallest power \(i\) such that \(2^i\) is bigger than 1 million.

(3) From question 1, modify your code so that we have a \textbf{procedure}, that on input integer \(n\), it outputs the smallest integer with exactly \(n\) divisors.

Planning a code

When we write a procedural code, the best approach is to first write a \textbf{pseudocode} detailing the steps to be taken, before proceeding to write the code. For example, suppose we need to write a procedure for the Euclidean Algorithm. Suppose the inputs are \(d_{-2}, d_{-1}\), then, we need to do the following:

\[
\begin{align*}
 d_{-2} &= a_0d_{-1} + d_0 \\
 d_{-1} &= a_1d_0 + d_1 \\
 & \vdots \\
 d_{k-2} &= a_{k}d_{k-1} + d_k \\
 d_{k-1} &= a_{k+1}d_k + 0
\end{align*}
\]

Then \(\gcd(d_{-2}, d_{-1}) = d_k\).
Note that the intermediate steps are the same in every step, namely we need to evaluate, for two numbers \(m, n \), that

\[
m = qn + r
\]

where \(r \) is the remainder, and \(q \) is the quotient, and that the values of \(m, n \) are the values of \(d \)'s from the previous division.

Therefore, we can generate a while loop for this purpose:

```plaintext
while(remainder is not 0) do the following
    let \( m \) and \( n \) be the \( d \)'s from the previous division
    find the quotient and remainder in \( m=qn+r \)
od
```

When remainder is 0, the gcd is the last non-zero remainder.

Now, we can incorporate the rest of the procedural code as follows:

```plaintext
findgcd:=proc(a,b)
    let \( m := a \), \( n := b \)
    do the first division to find the remainder in \( m=qn+r \)
    while(remainder is not 0) do the following
        let \( m := n \) and \( n := r \) (so that we can do the next division)
        find the remainder in \( m=qn+r \)
    od
    RETURN(n) (which is the last non-zero remainder)
end:
```

Exercises:

(4) Use the above pseudocode to develop the procedure \texttt{findgcd}. You can use the function \texttt{mod} to find the remainder. Look at the help page for the use of \texttt{mod}.

(5) The \textit{Maple} procedure \texttt{isprime(n)} returns \texttt{true} if \(n \) is prime, and \texttt{false} otherwise. Let \(a, b \) be positive integers that are co-prime. Write a procedure that finds the smallest integer \(n \) such that \(a + bn \) is a prime.