The function \(\phi \) in RSA key generation is a **counting function**. There are a few well-known counting functions and are defined as follows.

\[
\begin{align*}
\tau(n) &= \text{number of divisors of } n \\
\sigma(n) &= \text{sum of divisors of } n \\
\phi(n) &= \text{number of positive integers not exceeding } n \text{ that are coprime to } n
\end{align*}
\]

For example, the divisors of 12 are 1, 2, 3, 4, 6, 12 and the numbers that are coprime to 12 are 1, 5, 7, 11. Therefore,

\[
\begin{align*}
\tau(12) &= 6 \\
\sigma(12) &= 28 \\
\phi(12) &= 4
\end{align*}
\]

1) Find the \(\tau, \sigma, \phi \) values for the following integers

(a) 18
(b) 36
(c) 47
(d) 48
(e) 128
(f) 144
(g) 2 \cdot 3 \cdot 5 \cdot 7
(h) 2^{12}
(i) 2^3 \cdot 3^4 \cdot 5^7

2) Let \(p \) be a prime, what are the values of \(\tau(p), \sigma(p) \) and \(\phi(p) \)?

3) If \(n \geq 2 \), what is the minimum value for \(\tau(n) \)? What about maximum value? Use your calculator to generate some values of \(\tau(n) \) and give a conjecture. Can you argue why they are true?

4) Can you repeat the previous part and argue the same for \(\sigma(n) \)? What about \(\phi(n) \)?

5) If the factorization of \(n \) is known, then there are formulas for \(\tau(n), \sigma(n) \) and \(\phi(n) \). Find the formulas.

6) Suppose you do not know the factorization of \(n \), but you know \(\phi(n) \), would that compromise the security?

7) The generalized version of Fermat’s Little Theorem is the Euler-Fermat Theorem. Let \(n \geq 2 \) be an integer and \(\gcd(m, n) = 1 \), then

\[
m^{\phi(n)} \equiv 1 \pmod{n}.
\]

Use this theorem to show that when \(c \equiv m^e \pmod{n} \) and \(m' \equiv c^d \pmod{n} \), then \(m \equiv m' \pmod{n} \). (This is to verify that the RSA algorithm does work.)

8) Extend the RSA encryption to a product of three primes \(n = pqr \). What has to be changed in the algorithm? Can you extend this further? What do you think of the security and the practicality in these extensions?