
15.3 2-3-4 Trees & Other Trees

2-3-4 Trees
extend BST to have more then 2 children
need to have different relational check than just less-than &
greater-then

will allow more than 2 search paths
m-node tree has m children

stores valves k1 to k(m-1)
children T1 to Tm
check value v as follows:

v < k1 go to T1
k1 <= v < k2 go to T2
k2 <= v < k3 go to T3
etc until:
k(m-1) <= v go to Tm

2-3-4 tree allows m = 2, 3 or 4
BST is m = 2 only

2-3-4 ADT
Data: A tree where

1 each node stores 1 to 3 values
2. each non-leaf node is an m-node w/ m = 2, 3 or 4
3. all leaves are on the same level

Operations
create empty
check empty
search for an item
insert an item; maintain 2-3-4 property
delete an item; maintain 2-3-4 property

Example:

Inserting an item
Must maintain property 3 which keeps the tree balanced
Pseudocode

Other Trees Friday, November 09, 2007
2:12 PM

 CS223 Page 1

Pseudocode
if tree is empty

create 2-node w/ item & make it root
else

find the leaf node where item belongs
if leaf contains < 3 valves

add item to leaf
else

split leaf into two nodes
median of 4 values used as "root" for this subtree
all values < median go into one node (1 or 2 values)
all valves > median go into the other (1 or 2 values)

set node to original leaf
set parent to node
set split to true
while split is true

if parent is NULL
create new 2-node w/ median
make two new nodes children of 2-node
set root to 2-node

else if parent has < 3 values
add median to parent values
replace node w/ two new nodes
set split to false

else
split parent into two nodes using same method as
above
set node to parent
set parent to parent's parent

Example:

 CS223 Page 2

An alternative to splitting up w/ the while loop is to split all 4-
node to two 2-nodes while searching for leaf to insert the item

this is called top-down insertion
eliminates while loop
faster since only visit each node once

Data Storage
Simple implementation

array of 3 for values
array of 4 node pointers for children

Simple implementation is inefficient

 CS223 Page 3

Simple implementation is inefficient
always allocates space for a 4-node
wasted memory for 2-node & 3-node
approximately 75% of memory is wasted

can use BST to represent any tree but BST will not stay balanced
red-black trees can also be used to represent 2-3-4 trees

Red-Black trees
BST tree w/ colored links (red & bled)
kept balanced using AVL-like rotations
maintains the following properties:

1. Each path from the root to a leaf node has the same number
of black links
2. No path from the root to a leaf has two or more consecutive
red links

Note: this is one definition. An alternative definition is:
each node is colored red or black
the root node is black
if a node is red, its children must be black
every path from a node to a NULL "leaf " must contain the same
number of black nodes

To represent 2-3-4 tree as red-black
make the link black if it is an actual link in the 2-3-4 tree
make the link red if it connects parts of the same node in 2-3-4
tree

splitting a node will change link colors

 CS223 Page 4

the split may cause two consecutive red links
for example, there could be a red link to Y
use AVL rotations to remove consecutive red links

B-Trees
book's definition is weak, using another
use m-node concept like 2-3-4 tree
can use external storage for data

data items are stored in leaves, which can be on disk
Definition

all data is stored in leaves
non-leaf nodes store keys to data on disk
the root is either a leaf or has between 2 and M children
the non-leaf nodes have ceiling(M/2) to M children
all leaves have ceiling(L/2) to L data items

choose L & M based on amount of data to be stored
 CS223 Page 5

choose L & M based on amount of data to be stored
affects number of nodes needed to index the data
nodes are in main memory, so want to choose values that will
allow all nodes to be stored
L & M can be the same

2-3-4 tree has L=M= 4
Example:

 CS223 Page 6

