
Optimization & Algorithm Analysis (Ch 1.2, 10.4)
Concerned with:

space utilization (eg memory)
time efficiency

Usually optimize for just one of the two
usually a tradeoff between space & time
fast alg uses more mem for example

Not as critical for smaller programs, but many tasks where still
important

real-time devices
games
large-scale data crunching

Time efficiency
how long it takes to do a task
affected by several of the following:

amount of data
nature of data
algorithm

use approximate measurement instead of seconds
seconds can be affected by hardware, OS, system load, etc

need a standardized measure that is machine independent
approximate count of instructions in the algorithm
can't use court of machine instructions (compiled code), not
machine independent

Counting algorithm instructions
must look at each line of code and see how many steps it
takes

basic code (eg assignment, math) is seen as taking 1
step
loops more complex

have to figure how many times the loop executes
Ex: for(i=0; i<n; i++)

goes from 0 to n-1, that's n times
plus 1 more step to check the stopping condition

then have to consider how often each stmt in the loop
body executes

Ex:for(i=0; i<n; i++) { sum += i; }
from above there are n loops

so loop body executes n times
how long for each loop body?

look at each loop stmt
have one basic code stmt: add i to sum
since basic, takes 1 step
so 1 step for each loop body

now multiply steps in a single loop body by number of
loops

Ex: 1 step for each loop body, n loops total
n * 1 = n

Thinking Critically Thursday, September 13, 2007
1:12 PM

 CS223 Page 1

n * 1 = n
so n steps for loop body plus 1 step to check stopping
condition

this loop has n+1 steps
Ex: Two methods to find sum in Ch1.2

Algorithm 1
1. Have user input valve for n
2. Set sum = 0
3. For each i in the range 1 to n

a. add i to sum
4. Return sum
Counting steps

1. Basic task so 1 step
2. Basic task, 1 step
3. Loop, same as above example, n+1 steps
4. Basic task, 1 step
Total: n+4 steps

Algorithm 2
1. Have user input value for n
2. Return (n * (n + 1)) / 2
Counting steps

1. Basic task, 1 step
2. Basic task, 1 step
Total: 2 steps

recursive functions are counted similarly to loops
find out how many times it calls itself and how long
recursive case body takes
add in number of steps for stopping case

time can also be affected by structure of data
this is one way data structures differ
for example, fast to print a sorted list if data is stored
sorted
have to consider following for each alg:

best case
worst case
average case

often the worst case is what most look at
sets an upper bound on the performance
can't get any worse

Big O notation
just a formal way to express counted steps
takes the order of magnitude

ignores constants
3n is order of magnitude n
3 is order of magnitude 1 (constant)

takes the largest factor
eg in n+1, n is greater factor than 1, so considered
order of magnitude n

Above examples
Alg1 is n +4 steps, so that's order of magnitude n
Alg2 is 2 steps, so that's order of magnitude 1
Alg1 is O(n)
Alg2 is O(1)

Common notations
 CS223 Page 2

Alg2 is O(1)
Common notations

O(1) is constant
O(n) is linear
O(n^2) is quadratic
O(n^3) is cubic
O(2^n) is exponential
Figure 10.6 on page 558 shows how these graph out for
various values of n

Can be used to express space utilization too
Space utilization

how much memory data is stored in
again, must have a standardized method for comparison

can't just see how much mem the program used
also use a count instead of size (ie n units)
count says what it is a count of

Ex: you are storing student records
you'd say the storage is O(n)

where n is the number of student records
computing space utilization for an entire program can be tedious

course will focus on memory utilization for each data
structure

Know the Problem
no one best alg or data structure
have to analyze the problem

come up with the best solution for the problem at hand
don't forget about the context of the problem

what sort of system is it geared for?
a PDA will have different ideas of "optimal" than a gaming PC

what are the target users tolerances
some people want speed
some people want low "footprint"

remember that big-O is approximate
ignores constants & smaller factors that may be a big part of
performance

particularly w/ small data sets
many compilers can optimize code

differences between similar algs may be minimized

 CS223 Page 3

