
Two types of sort
internal - all done in memory
external - secondary storage may be used

13.1 Quadratic sorting methods
data to be sorted has relational operators such as < and ==
sort results in ascending or descending order based off data valve
or a key in a record
Selection Sort

scan through list looking for smallest (or largest) element further
in list
swap that element w/ current element

67, 33, 21, 84, 49, 50, 75
21, 33, 67, 84, 49, 50, 75
21, 33, 49, 84, 67, 50, 75
21, 33, 49, 50, 67, 84, 75
21, 33, 49, 50, 67, 75, 84

Pseudocode
sort the array x[1] to x[n]
for i=1 to n-1

set minPos to i
set min to x[i]
for j=i+1 to n

if x[j]< min
set minPos to j
set min to x[j]

set x[minPos] to x[i]
set x[i] to min

Exchange Sort
systematically interchange elements
bubbletops is a common exchange sort

very inefficient but easy to learn
compare neighboring elements and put two in sorted order
result of one pass is that largest element is swapped to
end of list
next pass excludes last element

Example:
67, 33, 21, 84, 49, 50, 75

33, 67
21, 67

67,84
49, 84

50, 84
75, 84

33, 21, 67, 49, 50, 75, 84
21, 33

33, 67
49, 67

Sorting Sunday, October 21, 2007
11:47 PM

 CS223 Page 1

49, 67
50, 67

67, 75
21, 33, 49, 50, 67, 75, 84
would still do pass for 21-50 but would do no swaps

Pseudocode
sort x[1] to x[n]
set passes to n-1
while passes is not 0

set last to 1
for i=1 to passes

if x[i]>x[i+1]
swap x[i] and x[i+1]
set last to i

set passes to last-1
Insertion Sort

insert element into already sorted list
start w/ 1 element list & grow
at pass p, elements 1 to p are sorted & p+1 inserted in sorted
order
Example:

67, 33, 21, 84, 49, 50, 75 p=1 do nothing, original array
33, 67, 21, 84, 49, 50, 75 p=2
21, 33, 67, 84, 49, 50, 75 p=3
21, 33, 67, 84, 49, 50, 75 p=4
21, 33, 49, 67, 84, 50, 75 p=5
21, 33, 49, 50, 67, 84, 75 p=6
21, 33, 49, 50, 67, 75, 84 p=7

Pseudocode
sort x[1] to x[n], use x[0] to store x[p]
for p=2 to n

set x[0] to x[p]
set j to p
while x[0]< x[j-1]

set x[j] to x[j-1]
decrement j

set x[j] to x[0]
Evaluation of sorting schemes

all have quadratic worst & average cases
selection sort

simple, but must scan list/array for next smallest/largest item
heapsort is a more efficient selection sort
performance does not improve when lists are partially/fully
sorted

bubble sort
better for partially/fully sorted lists
inefficient due to volume of swaps
quicksort is a better exchange sort

insertion sort
better then selection/bubble sort
still inefficient
good for small lists (n<20) or partially sorted lists

Indirect Sorting
use index table to sort positions of large records

 CS223 Page 2

Indirect Sorting
use index table to sort positions of large records
rather than swap large objects (like StudentRecord) swap
their indexes in index table
scan index table sequentially to find order to traverse records
Example:

index table: 5, 3,1,2, 4, 0
means to traverse element 5, then 3, then 1, etc

Shell sort & binary insertion sort are better insertion sorts
binary uses binary search to find hole
Shell produces partially ordered sublists

13.2 Heaps, Heapsort & Priority Queues
O(n log2n) is best possible worst case sorting time
heapsort is a type of selection sort that has this runtime
Heap

a complete binary tree
all levels filled except possibly the bottom level
bottom level is filled in left positions
if represented as array, no holes would be left in array

tree & subtrees have heap-order property
max heap-order

root value is greater than or equal to value of its children
min heap-order

root value is less than or equal to value of its children
The 0th slot in the array is reserved for use by heapsort

Heap Operations
construct empty heap

set count to 0
check empty

return true if count is 0
retrieve max (or min for min heap) value

if empty()
issue "empty heap " error

else
return value of root

delete max (or min) valve
Issue

 CS223 Page 3

delete max (or min) valve
Issue

must replace root w/ next sorted item
because of heap order, one of root's children is next
cannot just move it up because completeness must be
maintained

Solution
move rightmost bottom level node up to root

maintains completeness because that node is at end of
array

while this node violates heap order
swap w/ child that restores heap order

this process is called percolate-down
Remove Pseudocode

set x[1] to x[count]
decrement count
call percolate-down

Percolate-down Pseudocode
Given: a semi-heap starting at slot r
while r<=count do

 CS223 Page 4

while r<=count do
set c to 2*r // left child
if c<count // r has two children

AND x[c]<x[c+1] // right is larger
set c to c+1 // select right child

if x[r]<x[c] // heap order violated
AND c<=count // valid child
swap x[c] and x[r]
set r to c

else
break // heap order restored, end while loop

Insert an item
place at end of array & percolate-up
Pseudocode

increment count
set x[count] to value
call percolate-up

Percolate-up Pseudocode
set loc to count
set parent to loc / 2
while parent >= 1 AND x[loc] > x[parent]

swap x[loc] and x[parent]
set loc to parent
set parent to loc / 2

Heapsort
given an array to sort

treat array as a complete tree
convert tree into heap

How to convert time into heap?
keep applying percolate down to non-leaves
start at rightmost non-leaf

 CS223 Page 5

heapify Pseudocode
for r = n /2 down to 1

percolate-down at r
Once we have a heap, can now sort

delete root
this moves rightmost bottom node up to root &
percolates it down

copy root value to end of array
fill in hole left by moving rightmost bottom node

repeat w/ subheap that excludes this coped root value
Pseudocode

heapify x
for i=count down to 3

set x[0] to x[1]
delete root of x[1] to x[i] heap
set x[i] to x[0]

swap x[1] and x[2]

Advantages of Heaps
do not become lopsided

always complete
O(n log2n) thus assured
good for priority queues

highest priority is root

13.3 Quicksort
fast method to sort
uses divide-and-conquer strategy
Algorithm

If number of elements is 0 or 1
do nothing // stopping condition

Else
select an element as the pivot
split remaining elements in to:

smaller : elements <= pivot
greater: element > pivot

return quicksort (smaller), pivot, quicksort (larger)
Selecting the pivot

 CS223 Page 6

Selecting the pivot
pivot can be any element
if select 1st element always, have poor performance w/ sorted
lists

everything is either smaller or larger
makes runtime quadratic

want even distribution most of the time
choosing randomly gets good partition of elements

costly to generate random number
median-of -three

select median of first, middle & last elements
gets a pivot closer to median of the whole list than just
selecting first element

Splitting / Partitioning the list
several methods to generate smaller and larger
search method

swap pivot w/ either 1st or last element
Start two searches

i starts at 0 (1 if pivot is 0)
i looks for elements > pivot

j starts at size-1 (size-2 if pivot is size-1)
j looks for elements <= pivot

when both i & j have stopped, swap the elements
repeat search until i & j cross

then swap pivot
if pivot in 0, swap w/ j
if pivot in size-1, swap w/ i

now have smaller & larger subsets
subsets can be sorted w/ any scheme
can use fast method for small subsets like insertion sort

Runtime
best case: n log2 n

pivot is median of list, partitions evenly
recursion creates a binary tree w/ log 2n levels

average case: n log 2 n
pivot is not perfect, but still creates tree-enough like
structure

worst case: quadratic
pivot is largest or smallest element, partitions skewed
list is already sorted (ascending or descending)
creates linked list instead of binary tree

Code
template <class T>
int median-of-three(T a[], int first, int last) {

int c = (first +last) / 2;
if(a[c]<a[first])

swap(a[first], a[c]);
if(a[first]<a[last])

swap(a[first], a[last]);
if(a[first]<a[c])

swap(a[first, a[c]);
swap(a[first], a[c]);
return first;

}
 CS223 Page 7

return first;
}
template <class T>
int split(T a[], int first, int last) {

int p = median-of-three(a, first, last);
int pivot = a[p];
swap(a[first], a[p]);
int i = first + 1;
int j = last;
while(i<j) {

while(pivot<a[j])
j--;

while(i<j && a[i] <=pivot)
i++;

if(i<j)
swap(a[i], a[j]);

}
swap(a[first], a[j]);
return j;

}
template <class T>
void quicksort(T a[], int first, int last) {

int p;
if(first<last) {

p=split(a,first,last);
quicksort(a,first,p-1); // can use faster sort here
quicksort(a,pos+1 ,last); // and here

}
}

13.4 Mergesort
uses files as storage structure
merges two files into third, sorted file
Basic merge

take element from each file
place smaller in output file & replace w/ next element in its file
Example:

file1: 15 20 25 35 45 60 65 70
file2: to 30 40 so 55
x=15
y=10
place 10 in file3
y=30
place 15 in file 3
y=20
place 20 in file 3
x = 25
and so on

when run out of input in one file dump remaining contents of
other file to output
Algorithm

read x from file1
read y from file2
while not Eof for either file

 CS223 Page 8

while not Eof for either file
if x<y

write x to file3
read x from file1

else
write y to file3
read y from file2

if Eof of file1
dump remaining file2 to file3

if EOF of file 2
dump remaining file1 to file3

Binary mergesort
given a single file to be sorted
how to split into two files?

send even slots to one file
send odd slots to other file

don't scan & output like w/ basic
instead sort groups of numbers
pass 1, take 1 element from each file

create 2 element sorted output
pass 2, take 2 elements from each file

create 4 element sorted output
pass 3, take 4 elements from each file

create 8 element sorted output
pass n, take 2^(n-1) elements

create 2^n element sorted output
Natural mergesort

helpful for partially sorted files
instead of splitting on even/odd, splits when x [i +1] < x[i]
i.e. splits at end of a sorted run

merge also takes advantage of runs
merge runs regardless of length

Example:
input: 75 55 15 20 85 30 35 10 60 40 50 25 45 80 70 65
Split 1:

f1: 75 15 20 85 10 60 25 45 80 65
f2: 55 30 35 40 50 70

Merge 1:
file: 55 75 15 20 30 35 40 50 70 85 10 60 25 45 80 65

Split 2:
f1: 55 75 10 60 65
f2: 15 20 30 35 40 50 70 85 24 45 80

Merge 2:
file: 15 20 30 35 40 50 55 70 75 85 10 25 45 60 65 80

Split 3:
f1: 15 20 30 35 40 50 55 70 75 85
f2: 10 25 45 60 65 80

Merge 3:
file: 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Algorithms:
Split

Open F for input and F1 & F2 for output
While not EOF for F

Copy elements from F into F1 until x[i+1]<x[i]
 CS223 Page 9

Copy elements from F into F1 until x[i+1]<x[i]
Copy elements from F into F2 until x[i+1]<x[i]

Merge
Open F1 & F2 for input, F for output
Initialize numSub to 0
While not EOF on F1 or EOF on F2

While the end of a run has not been met in either F1 or
F2

copy smaller of two elements to F
if EOF on F1

copy rest of F2's run to F
else

copy rest of F1's run to F
increment numSub

While run in F1
copy run to F
increment numSub

While run in F2
copy run to F
increment numSub

return numSub
Mergesort

initialize numSub to 0
do-while numSub is not 1

split F
set numSub to merge F1,F2

Runtime: O(nlog2n)

merging runs
set runs to 0
read f1 from Fl
read f2 from F2
while not EOF for F1 & F2

set end1 to false
set end2 to false
while not end1 and not end2

if f1 < f2
output f1
read f1 from F1
if end of run

set end1 to true
else

output f2
read f2 from F2
if end of run

set end2 to true
while end1 and not end2

output f2
read f2 from F2
if end of run

set end2 to true
while end 2 and not end1

output f1
 CS223 Page 10

output f1
read f1 from F1
if end of run

set end1 to true
increment runs

if not EOF for F1
output f1
read f1 from F1
if end of run

increment runs
if not EOF for F2

output f2
read f2 from F2
if end of run

increment runs
return runs

 CS223 Page 11

