Two types of sort
internal - all done in memory
external - secondary storage may be used
13.1 Quadratic sorting methods
data to be sorted has relational operators such as < and ==
sort results in ascending or descending order based off data valve or a key in a record
Selection Sort
scan through list looking for smallest (or largest) element further
in list
swap that element w/ current element
67, 33, 21, 84, 49, 50, 75
21, 33, 67, 84, 49, 50, 75
21, 33, 49, 84, 67, 50, 75
21, 33, 49, 50, 67, 84, 75
$21,33,49,50,67,75,84$
Pseudocode
sort the array $x[1]$ to $x[n]$
for $\mathrm{i}=1$ to $\mathrm{n}-1$
set minPos to i
set min to $x[i]$
for $j=i+1$ to n
if $x[j]<\min$
set minPos to j
set min to $x[j]$
set $x[m i n P o s]$ to $x[i]$
set $x[i]$ to min
Exchange Sort
systematically interchange elements
bubbletops is a common exchange sort
very inefficient but easy to learn
compare neighboring elements and put two in sorted order result of one pass is that largest element is swapped to end of list
next pass excludes last element
Example:
67, 33, 21, 84, 49, 50, 75
33, 67
21, 67
67,84
49, 84
50, 84
75, 84
33, 21, 67, 49, 50, 75, 84
21, 33
33, 67

49, 67
50,67
67, 75
21, 33, 49, 50, 67, 75, 84
would still do pass for 21-50 but would do no swaps
Pseudocode
sort $\times[1]$ to $\times[n]$
set passes to $\mathrm{n}-1$
while passes is not 0
set last to 1
for $i=1$ to passes if $x[i]>x[i+1]$
swap $x[i]$ and $x[i+1]$
set last to i
set passes to last-1
Insertion Sort
insert element into already sorted list
start w/ 1 element list \& grow
at pass p, elements 1 to p are sorted \& p+1 inserted in sorted
order
Example:
67, 33, 21, 84, 49, 50, $75 \mathrm{p}=1$ do nothing, original array
33, 67, 21, 84, 49, 50, $75 \mathrm{p}=2$
$21,33,67,84,49,50,75 \mathrm{p}=3$
$21,33,67,84,49,50,75 \mathrm{p}=4$
21, 33, 49, 67, 84, 50, $75 \mathrm{p}=5$
21, 33, 49, 50, 67, 84, 75 p=6
$21,33,49,50,67,75,84 \mathrm{p}=7$
Pseudocode
sort $x[1]$ to $x[n]$, use $x[0]$ to store $x[p]$
for $p=2$ to n
set $\mathrm{x}[0]$ to $\mathrm{x}[\mathrm{p}]$
set j to p
while $x[0]<x[j-1]$
set $\times[j]$ to $\times[j-1]$
decrement j
set $\mathrm{x}[\mathrm{j}]$ to $\mathrm{x}[0]$
Evaluation of sorting schemes
all have quadratic worst \& average cases
selection sort
simple, but must scan list/array for next smallest/largest item heapsort is a more efficient selection sort
performance does not improve when lists are partially/fully sorted
bubble sort
better for partially/fully sorted lists
inefficient due to volume of swaps
quicksort is a better exchange sort
insertion sort
better then selection/bubble sort
still inefficient
good for small lists ($\mathrm{n}<20$) or partially sorted lists
Indirect Sorting

Indirect Sorting
use index table to sort positions of large records
rather than swap large objects (like StudentRecord) swap their indexes in index table
scan index table sequentially to find order to traverse records Example:
index table: 5, 3,1,2, 4, 0
means to traverse element 5 , then 3 , then 1 , etc
Shell sort \& binary insertion sort are better insertion sorts
binary uses binary search to find hole
Shell produces partially ordered sublists
13.2 Heaps, Heapsort \& Priority Queues
$\mathrm{O}(\mathrm{n} \log 2 \mathrm{n})$ is best possible worst case sorting time heapsort is a type of selection sort that has this runtime Heap
a complete binary tree
all levels filled except possibly the bottom level
bottom level is filled in left positions
if represented as array, no holes would be left in array tree \& subtrees have heap-order property
max heap-order
root value is greater than or equal to value of its children min heap-order
root value is less than or equal to value of its children The 0th slot in the array is reserved for use by heapsort

Heap Operations
construct empty heap
set count to 0
check empty
return true if count is 0
retrieve max (or min for min heap) value
if empty()
issue "empty heap " error
else
return value of root
delete max (or min) valve
delete max (or min) valve
Issue
must replace root w/ next sorted item
because of heap order, one of root's children is next cannot just move it up because completeness must be maintained
Solution
move rightmost bottom level node up to root maintains completeness because that node is at end of array
while this node violates heap order swap w/ child that restores heap order
Example:

this process is called percolate-down
Remove Pseudocode
set $x[1]$ to \times [count]
decrement count
call percolate-down
Percolate-down Pseudocode
Given: a semi-heap starting at slot r

$$
\text { while } \mathrm{r}<=\text { count do }
$$

set c to $2 * r$ // left child
if $\mathrm{c}<$ count // r has two children
AND $x[c]<x[c+1] / /$ right is larger
set c to $c+1 / /$ select right child
if $x[r]<x[c] / /$ heap order violated
AND c<= count // valid child swap $x[c]$ and $x[r]$ set r to c
else
break // heap order restored, end while loop
Insert an item
place at end of array \& percolate-up
Pseudocode
increment count
set x [count] to value
call percolate-up
Percolate-up Pseudocode
set lac to count
set parent to oc / 2
while parent $>=1$ AND $\times[$ oc $]>x[$ parent $]$
swap x [oc] and x [parent]
set floc to parent
set parent to oc / 2
Heapsort
given an array to sort
treat array as a complete tree convert tree into heap
How to convert time into heap?
keep applying percolate down to non-leaves
start at rightmost non-leaf
Example:
$35,15,77,60,22,41$

heapify Pseudocode
for $r=n / 2$ down to 1 percolate-down at r
Once we have a heap, can now sort
delete root
this moves rightmost bottom node up to root \& percolates it down
copy root value to end of array
fill in hole left by moving rightmost bottom node
repeat w/ subheap that excludes this coped root value
Pseudocode
heapify x
for $\mathrm{i}=$ count down to 3
set $\times[0]$ to $\times[1]$
delete root of $x[1]$ to $x[i]$ heap
set $x[i]$ to $x[0]$
swap $x[1]$ and $x[2]$

Advantages of Heaps
do not become lopsided
always complete
$\mathrm{O}(\mathrm{n} \log 2 \mathrm{n})$ thus assured
good for priority queues
highest priority is root

13.3 Quicksort

fast method to sort
uses divide-and-conquer strategy
Algorithm
If number of elements is 0 or 1
do nothing // stopping condition
Else
select an element as the pivot
split remaining elements in to:
smaller : elements <= pivot
greater: element > pivot
return quicksort (smaller), pivot, quicksort (larger)

Selecting the pivot
pivot can be any element
if select 1st element always, have poor performance w/ sorted lists
everything is either smaller or larger
makes runtime quadratic
want even distribution most of the time choosing randomly gets good partition of elements
costly to generate random number
median-of -three
select median of first, middle \& last elements
gets a pivot closer to median of the whole list than just selecting first element
Splitting / Partitioning the list
several methods to generate smaller and larger
search method
swap pivot w/ either 1st or last element
Start two searches
i starts at 0 (1 if pivot is 0)
i looks for elements > pivot
j starts at size-1 (size-2 if pivot is size-1)
j looks for elements <= pivot
when both i \& j have stopped, swap the elements
repeat search until i \& j cross
then swap pivot
if pivot in 0, swap w/ j
if pivot in size-1, swap w/ i
now have smaller \& larger subsets
subsets can be sorted w/ any scheme
can use fast method for small subsets like insertion sort
Runtime
best case: $n \log 2 n$
pivot is median of list, partitions evenly recursion creates a binary tree $\mathrm{w} / \log 2 \mathrm{n}$ levels
average case: $n \log 2 n$
pivot is not perfect, but still creates tree-enough like
structure
worst case: quadratic
pivot is largest or smallest element, partitions skewed
list is already sorted (ascending or descending)
creates linked list instead of binary tree
Code
template <class T>
int median-of-three(T a[], int first, int last) \{
int c = (first +last) / 2;
if(a[c]<a[first])
swap(a[first], a[c]);
if(a[first]<a[last])
swap(a[first], a[last]);
if(a[first]<a[c])
swap(a[first, a[c]);
swap(a[first], a[c]);
return first;

```
    return first;
}
template <class T>
int split(T a[], int first, int last) {
    int p = median-of-three(a, first, last);
    int pivot = a[p];
    swap(a[first], a[p]);
    int i = first + 1;
    int j = last;
    while(i<j) {
        while(pivot<a[j])
        j--;
        while(i<j && a[i] <=pivot)
                i++;
        if(i<j)
                swap(a[i], a[j]);
    }
    swap(a[first], a[j]);
    return j;
}
template <class T>
void quicksort(T a[], int first, int last) {
    int p;
    if(first<last) {
        p=split(a,first,last);
        quicksort(a,first,p-1); // can use faster sort here
        quicksort(a,pos+1 ,last); // and here
    }
}
```


13.4 Mergesort

uses files as storage structure
merges two files into third, sorted file
Basic merge
take element from each file
place smaller in output file \& replace w/ next element in its file
Example:
file1: 1520253545606570
file2: to 3040 so 55
$\mathrm{x}=15$
$y=10$
place 10 in file3
$\mathrm{y}=30$
place 15 in file 3
$\mathrm{y}=20$
place 20 in file 3
$x=25$
and so on
when run out of input in one file dump remaining contents of other file to output
Algorithm
read x from file1
read y from file2
while not Eof for either file if $x<y$
write x to file3 read x from file1 else
write y to file3
read y from file2
if Eof of file1
dump remaining file2 to file3
if EOF of file 2
dump remaining file1 to file3
Binary mergesort
given a single file to be sorted
how to split into two files?
send even slots to one file send odd slots to other file
don't scan \& output like w/ basic instead sort groups of numbers pass 1, take 1 element from each file create 2 element sorted output pass 2 , take 2 elements from each file create 4 element sorted output pass 3 , take 4 elements from each file create 8 element sorted output pass n, take $2^{\wedge}(n-1)$ elements create $2 \wedge n$ element sorted output
Natural mergesort
helpful for partially sorted files
instead of splitting on even/odd, splits when $x[i+1]<x[i]$
i.e. splits at end of a sorted run
merge also takes advantage of runs
merge runs regardless of length
Example:
input: 75551520853035106040502545807065
Split 1:
f1: 75152085106025458065
f2: 553035405070
Merge 1:
file: 55751520303540507085106025458065 Split 2:
f1: 5575106065
f2: 1520303540507085244580
Merge 2:
file: 15203035405055707585102545606580
Split 3:
f1: 15203035405055707585
f2: 102545606580
Merge 3:
file: 10152025303540455055606570758085
Algorithms:
Split
Open F for input and F1 \& F2 for output While not EOF for F

Copy elements from F into F1 until $x[i+1]<x[i]$
Copy elements from F into F2 until $x[i+1]<x[i]$
Merge
Open F1 \& F2 for input, F for output
Initialize numSub to 0
While not EOF on F1 or EOF on F2
While the end of a run has not been met in either F1 or F2
copy smaller of two elements to F if EOF on F1
copy rest of F2's run to F
else
copy rest of F1's run to F increment numSub
While run in F1
copy run to F increment numSub
While run in F2
copy run to F
increment numSub
return numSub
Mergesort
initialize numSub to 0
do-while numSub is not 1
split F
set numSub to merge F1,F2
Runtime: $\mathrm{O}(\mathrm{nlog} 2 \mathrm{n})$

```
merging runs
    set runs to 0
    read f1 from Fl
    read f2 from F2
    while not EOF for F1 & F2
        set end1 to false
        set end2 to false
        while not end1 and not end2
        if f1 < f2
            output f1
            read f1 from F1
            if end of run
                set end1 to true
            else
            output f2
            read f2 from F2
            if end of run
                set end2 to true
            while end1 and not end2
            output f2
            read f2 from F2
            if end of run
                set end2 to true
            while end 2 and not end1
```

output f1
read f1 from F1
if end of run set end1 to true increment runs
if not EOF for F1
output f1
read f1 from F1
if end of run
increment runs
if not EOF for F2
output f2
read f2 from F2
if end of run
increment runs
return runs

