
12.1 Linear & Binary Search
assumes data is in a list/array
linear search

start at beginning
check each element until match found or all elements checked
does not need to be sorted
best case - 1st element is match
worst case - no match found, linear
average case - match found midway through

binary search
needs a sorted list
needs random access to elements in list

w/o random access , like STL list, must iterate pointer to
search location

cut search space in half each iteration
best case - 1st element is match
worst case - no match found, log2n

only log because do not search each element
faster as n increases

Ex n = 8,000,000 log2n = 23
Iterative Pseudocode

takes array called a, search val called item
1. set found to false
2. set first to 0
3. set last to size of a - 1
4. while first < = last and not found

a. calculate loc = (first + last)/2
b. if item < a[loc] then

set last to loc-1
else if item > a[loc]

set first to loc +1
else // item == a[loc]

set found to true
Recursive Pseudocoele

takes array a, search val item, first, last
1. set found to false
2. calculate loc = (first + last)/2
3. if item < a[loc] then

found = bin-search (a, item, first, loc-1)
else if item > a[loc]
found = bin-search (a, item, loc+1, last)
else
found = true

4. return found
Hidden time cost-sorted assumption

takes time to sort an unsorted list
would be nice to have a data structure that sorts on

Searching Friday, October 12, 2007
3:37 PM

 CS223 Page 1

would be nice to have a data structure that sorts on
insert/delete
binary search tree is such a data struct.

consider bin-search as following
right search -location - left search

treat location as root
convert right & left search into right & left subtrees

12.2 Intro to Binary Trees
Tree Terminology

nodes/vertices contain the data
directed arcs/edges connect nodes
root node has no incoming arcs & can reach all other nodes from
its outgoing arcs
path is a sequence of arcs from root to a node (or between two
nodes)
leaves are nodes w/ no outgoing arcs
children are the direct subnodes of a node (1 level down)
parent is node 1 level up
siblings are nodes on same level w/ same parent
descendants are in levels below a node
ancestors are in levels above a node
subtree - select one descendant & all of its children &
descendants
binary tree has two or less children

Examples of binary trees
binary search tree
outcome of a binary trial

eg flipping a coin
use a dummy root node
levels below root is # trials
paths show outcome sequences

decision tree
each node contains a Y/N question
follow one child for Y response
follow other child for N

construct a code w/ two symbols
eg Morse code
arc is labeled w/ symbol
node contains decoded value for path leading from root to
that node
Ex: . E, - T, .. I, .- A, -. N, -- M

Array representation
slot 0 1 2 3 4 5 6
node root 0L 0R 1L 1R 2L 2R
level 0 1 1 2 2 2 2
works best for complete frees

empty slots w/ incomplete trees
would need a way to indicate empty

balanced tree
height of right & left subtree for any node differs by only one
height is # levels in a tree/subtree

unbalanced trees not good for array storage
Linked node representation

node contains storage for data, pointer to left child & pointer to
 CS223 Page 2

Linked node representation
node contains storage for data, pointer to left child & pointer to
right child
make pointer NULL if no child
very common way to represent trees

12.3 Binary Trees as Recursive Data Struct.
right & left subtrees are also binary trees
recursive definition:

a binary tree is either empty or has a root node,
left subtree and right subtree

can use recursive algorithms for tree operations
common operation is traversals

Traversals
visit each node in the tree once
order of visiting nodes is not as vital
simple traversal

1. if tree is empty, do nothing
2. do traversal operation on root (V)
3. traverse left subtree (L)
4. traverse right subtree (R)

changing the order of steps 2-4 is valid
will change order by which nodes are
processed
6 ways to order steps 2-4

LVR
VLR
LRV
VRL
RVL
RLV

special terms for certain orders
inorder LVR (infix)
preorder VLR (prefix)
postorder LRV (postfix)
-show math equation example

12.4 Binary Search Trees
is a binary tree w/ bin search tree (BSt) property:

left subtree values are less than root
right subtree valves are greater than root

operations
construct empty BST
check empty
search for an item
insert a new item
delete an item
inorder, preorder & postorder traversals

(book only has inorder traversal)
Operation Pseudocode

construct empty
set root to NULL

check empty
if root is NULL

 CS223 Page 3

if root is NULL
return true

else
return false

search for an item
if tree is empty

return false
else if item < root's data

return search left subtree
else if item > root's data

return search right subtree
else

return true
insert item into tree

if tree is empty
allocate node for item
set root to node

else if item < root's data
insert item in left subtree

else if item > root's data
insert item in right subtree

else
output (either cout or cerr) that item is already in the tree

delete an item from a tree
Issue: filling the deleted node while maintaining BST property
Three cases for deleted node:

it is a leaf -delete it
it has one child - move child up into its place
it has two children-replace w/ either inorder successor or
predecessor
(largest value in left subtree or smallest value in right
subtree)
then delete the replacement node

replacement node should be leaf or have just one child
since we only allow unique valves in the tree

Pseudocode
// Find item's node & parent node
set found to false
set node to root
set parent to NULL
while not found and node is not NULL

if item < node's data
set parent to node
set node to node's left child

else if item > node's data
set parent to node
set node to node's right child

else
set found to true

if not found
issue "item not in tree" error
return from function

if node has two children
set replacement to node's right child
set parent to node

 CS223 Page 4

set parent to node
while replacement has a left child

set parent to replacement
set replacement to its left child

set node's data to replacement's data
set node to replacement

set subtree to node's left child
if subtree is NULL

set subtree to node's right child
if parent is NULL

set root to subtree
else if parent's left child is node

set parent's left child to subtree
else

set parent's right child to subtree
delete node

traverse tree in order, prints ascending values
if tree is empty

do nothing
traverse left subtree
print root's data
traverse right subtree

Problem of lopsidedness
BST property does not ensure that the tree is complete or
balanced
insertion order can greatly affect balance
worst case - insert in sorted order, either ascending or
descending

results in a linked list
balanced trees take log2n for insert, delete, & search
unbalanced trees can be as bad as linked lists, so can be linear
rebalancing trees can solve this

will discuss at end of quarter

12.7 Hash Tables
very fast searching, but sacrifices storage space
average time for insertions, deletions & searches is constant
hashing eliminates trial and error searching like w/ trees

has a table to store data (hash table)
hash function ideally stores each item in a unique slot

not always possible in practice since hash table is finite &
data to store can be infinite

uniqueness of slot also affected by nature of hash function
Hash Functions

purpose is to take an element & generate a key
key is a slot in the hash table
Modulo function

take the element and modulo it by the hash table size
issue is that elements will overlap

Example: hash table size is 100
then 0, 100,200, etc will all map to key 0

this is called a collision
if element is not an int, have to compute an int off its valve

Example: add up int value of chars in a string
 CS223 Page 5

Example: add up int value of chars in a string
no one perfect hash function for all datatypes
goal is to evenly distribute the elements across the whole hash
table
Random hashing

randInt = ((MULT * item) + ADD) % MOD;
key = randInt % tableSize;

Collision Strategies
how to handle when function does not generate unique keys
Increased Hash Table size

if capacity is 1.5 to 2 times greater than expected number of
items, fewer collisions occur
prime number sizes best for modulo hash functions
can't arbitrarily increase size & expect better performance

if storing 0-500, then for table sizes > 500, the upper slots
will never be result of hash function

Linear Probing
search linearly through table for an empty slot on insert
requires an "empty slot" value to tell used & unused slots
apart
on search, if key shot does not match, probe ahead until a
match or empty slot is found
on delete, use a "deleted" value so search knows to keep
probing
issue: primary clustering

elements that map to same/close key start forming
clusters
causes increased time for insert, delete & search
linear in worst case if whole table is probed

Quadratic Probing
try to avoid primary clustering
search slots in following order:

key + 1, key - 1, key + 2^2, key - 2^2, key + 3^2, key - 3
^2,...

issue: secondary clustering
same key probes same sequence

Double Hashing
use a second, different hash function for probe sequence
probe sequence is:

key, key + 2nd key, key + (2nd key)*2, key + (2nd key)*
3, ...

second key should never be zero since 0*2 is still 0
good choice for second function is:

R-(item % R)
where R is a prime number smaller then the hash table
size

table size should also be prime for double hashing
if not prime, sequence could wrap around & probe the
same slot(s)
Example: table size = 10, key = 0, 2nd key = 5

probe sequence: 0, 5, 0, 5, 0, 5, ...
Separate Chaining

don't probe ahead for a free slot
instead, store linked list of collisions for each slot

 CS223 Page 6

instead, store linked list of collisions for each slot
have to traverse list on delete & search

(head insert removes need to traverse on insert)
increases time for those operations from constant to the
chain length

Rehashing
hash tables are less efficient as they fill up
rehashing increases the hash table size

usually to a prime approximately twice the size of she
current table

all elements are removed from original table & have their
keys recomputed

 CS223 Page 7

