
8.1 Introduction to Queues
a queue is like a waiting line

enter one end
exit the other end
everyone exits in the same order that they entered

(no cutting into line)
this is called a first-in, first-out (FIFO) data structure
like a linked list with restrictions & improvements

only insert at the tail
only delete at the head
keep track of both head & tail (also called front & back)

operations
create empty
check it empty
enqueue - add element
dequeue - delete element
front - retrieve value of 1st element

8.2 Array Implementation
have two indices: front & back

front is index w/ 1st element
back is index of next available slot

to enqueue - put value in back's slot, increment back
to dequeue - increment front
want to avoid shifting elements like we did w/ array based lists

have a "circular" array
if an index advances beyond end, wrap at back to 0
can be done with: (index +1) % capacity

how to indicate empty w/circular array?
cannot use -1 index like lists & stacks

modulo formula will never evaluate to -1
look at behavior when last element dequeued

front & back are now the same
so look for front == back

how about full?
if we fill up the array, we also get front == back

to prevent this, reserve one empty slot between front & back
full when only one empty slot remains

(back + 1) % capacity == front
Pseudocode

Default constructor
set front & back to 0

empty()
if front == back

return true
else

return false
full()

if (back + 1) % capacity == front

Queues Tuesday, September 25, 2007
11:00 PM

 CS223 Page 1

if (back + 1) % capacity == front
return true

else
return false

enqueue (elementType)
if full()

issue "full queue" error & return
array[back] = element
back = (back + 1) % capacity

dequeue()
if empty()

issue "empty queue" error & return
front = (front +1) % capacity

elementType front()
if empty()

issue "empty queue" error & return
return array[front]

Dynamic Array version
as w/ list & stack, must add functions to allocate & deallocate
array
add:

destructor
copy constructor
assignment operator
constructor that takes an int for capacity

alter:
default constructor to allocate default capacity

only allows tail insertion & head deletion
optimized to make both operations constant

like linked stack, linked queue is a specialized form of linked list

to optimize insertion, add pointer to last element called tail or
back

head & tail are NULL
0 elements (empty)

head & tail point to same node
1 element

head points to 1st element
tail points to last element

2+ elements

of elements in queue

set head & tail to NULL
Default constructor

dequeue()
while not empty()

Destructor

set head & tail to NULL
if source is empty()

set ptr to source's head

enqueue(ptr->getData())
while ptr is not NULL

else

Copying method

Operation Pseudocode

8.3 Linked Queues

 CS223 Page 2

enqueue(ptr->getData())
set ptr to ptr->getNext()

call copying method
Copy constructor

dequeue()
while not empty()

call copying method

Assignment operator

return true
if head == NULL and tail == NULL

return false
else

empty()

allocate new node & set data

issue "out of mem" error & return
if allocation fails

set new node's next to NULL
set head & tail to new node

if queue is empty()

set tail's next to new node
set tail to new node

else

enqueue(elementType)

issue "empty queue" error & return
if empty()

set tmp to head

set head & tail to NULL
if head == tail

set head to head->getNext()
else

delete tmp

dequeue()

issue "empty queue" error & return
if empty()

return head->getData()

elementType front()

 CS223 Page 3

