
a circular list has the tail point back to the head instead of NULL

because you start at the head
also can't use "while not head"

set ptr to heed

traversal action
set ptr to head's next

do

while ptr is not heed

use a do-while

traversals cannot use "while not NULL"

tail must be updated to point to new head
head insertion

creates one element list

must point back to self
element is both head & tail

empty list insertion

insertion

must check for ore element list to transition back to empty
list

"next" of one element list is itself
cannot rely on head = head->getNext()

deletion

affects insertion, deletion & traversals

11.1 Circular Linked Lists

points back to the element before this one
Adds a previous pointer to the list node

Adds a "tail" pointer so List class
Can traverse list forward & back now
Also makes deletion easier because you don't have to find-previous

set new node's previous to NULL
set new node's next to head
set head's previous to new node
set head to new node

head insertion

Create var called next that is pointing to prev->getNext()
So have vars: prev, next, new node
set prev's next to new node

set tail to new node
if prev is tail

set next's prev to new node
else

set new node's next to next
set new node's prev to prev

other insertions-inserting after prev

Insertion

head deletion
Deletion

11.3 Doubly Linked Lists

List Variants Tuesday, September 25, 2007
11:00 PM

 CS223 Page 1

set tmp to head
set head to head->getNext()
set head's prev to NULL
delete tmp

head deletion

set tmp to tail
set tail to tail->getPrev()
set tail's next to NULL
delete tmp

tail deletion

set tmp to node to delete
set next to node->getNext()
set prev to node->getPrev()
set prev's next to next
set next's prev to prev
delete tmp

other deletions

 CS223 Page 2

