
6.1 Lists as an ADT
focus on what lists do
properties of data

homogeneous
finite length
sequential

operations
constructor - creates empty list
empty - check if list is empty
insert - add an item
delete - remove an item
traverse - various operations that go through a list sequentially

search - find an element
output - print list contents
copy - create a copy
sort - rearrange elements

various implementations possible
static arrays
dynamic arrays
linked lists w/ pointers (most common)
linked lists w/ 2D arrays

6.2 Static Array Implementation
list will have max capacity equal to the size of the array
list stored sequentially in memory

must be able to allocate mem chunk of appropriate size
head of list is slot 0
need to add a count of elements in list

tells if list is empty or full
operations

constructor - sets count of elements to 0
empty - check if count is 0
traverse - for (i=0; i<count; i++)

takes n for loops to traverse
search traversal averages half the list
sort traversal can take longer depending on the sort
algorithm

insert - depends on type of insert
tail insert

if (count < max-capacity)
array[count++] = element

else
// no space left error

insert mid-list or head
have to move elements down a slot
have to validate given position
can be used for tail insert too
if (count < max-capacity) {

if (pos < 0 || pos > count)

Lists Thursday, September 13, 2007
1:13 PM

 CS223 Page 1

if (pos < 0 || pos > count)
// issue "bad position" error

else {
for(i = count; i > pos; i--)

array[i] = array [i-1];
array[pos] = element;
count++;

}
}
else {

// issue "no space" error
}
takes up to n for loops to shift current elements

worst case is head insert
average case is mid-list insert
best case is tail insert

delete - also has to shift elements
if (empty()) {

// issue "empty list "error
}
else if (pos < 0 || pos >= count) {

// issue "illegal position" error
}
else {

for (i = pos; i < count-1; i++)
array[i] = array[i +1];

count--;
}
best/worst/average same as for insert

implementation details
how to define element type

#define macro
typedef (book)
template class

how to define max capacity
#define macro
const int (book)
class variable - should be static

only one copy of static vars across all class instances
static const int capacity = 100;

pp 262-269 has book's implementation
6.3 Dynamic Amery Implementation

Operations similar to above
default constructor should select some default capacity &
allocate mem
add constructor to take an int for capacity & allocate mem
add destructor to deallocate mem
copy has to allocate space for new list first
add assignment operator to deal w/ memory allocation issue

otherwise both lists point to same mem
also could cause mem leaks by not deleting old var

Implementation changes
add capacity var to member vars
change array var to a pointer

 CS223 Page 2

add capacity var to member vars
change array var to a pointer

6.4 Linked Lists
use pointers to connect elements

arrays have implicit order
linked lists have explicit order

list nodes need to store data & point to the next element
create node as separate class
needs functions to retrieve/set data & retrieve/set pointer

list is a collection of nodes & operations on the nodes
needs a pointer the 1st (head) node
consider list w/ only head ptr now
list variants add other pointers

list operations
create empty list - set head to NULL
is empty? - does head equal NULL?
traversal - from head node, follow pointer to next element

repeat until pointer to next is NULL
pseudocode

set ptr to head
while ptr is not NULL

do traversal operation
set ptr to ptr's next node

insertion - add new node to list
several cases depending on where adding

head insert / 1st node insert
new node will become head
pseudocode

set new's next to head
set head to new

must set next before changing head pointer
otherwise lose reference to old list

tail insert
new node will become end of list
pseudocode

traverse list to find current tail
set tail's next to new
set new's next to NULL

mid-list insert
insert after some specific node
pseudocode

traverse list to find previous node
set new's next to prev's next
set prev's next to new

can avoid traversal if pass ptr to insert
pseudocode

if ptr is NULL, do head insert
else, do tail/mid-list insert w/ ptr as tail/previous

traversal still has to be done somewhere for mid- list/tail
insert

to make insertion of 1st element or at tail easier, have list
node initialize next to NULL

deletion - remove node from list
must update pointers to reflect new order
two cases

 CS223 Page 3

two cases
head delete

remove 1st element
2nd element becomes new head
Pseudocode

create tmp ptr that points to head
set head to head's next
deallocate tmp

mid-list & tail delete
need to find nod before one being deleted
previous node will "skip over" deleted node
pseudocode

traverse list to find previous node
set prev's next to node's next
deallocate node

6.5 Linked List Implementation
NOTE: This differs from the book's implementation
Node class

member vars
an element (template type)
a pointer to the next node

member functions
default constructor - sets next to NULL
a constructor that takes an element & sets next to NULL
a constructor that takes an element & node pointer
setData to set the element
getData to retrieve element
setNext to set next pointer
getNext to retrieve next pointer
equality operator (for list search)
output operator (for list output)

Linked List Class
member vars

a node pointer for head
member functions

default constructor - sets head to NULL
destructor - deallocate list nodes
copy constructor - create 2nd list that stores same elements

has separate pointers & memory space
assignment operator - also create copy
bool empty() - check if head is NULL
output operator - print list contents
Node *search (T elem) - search list for element

return pointer of node if found
return NULL if not found

Node *find_previous (Node *ptr)
find the node before given node
can be private helper function for delete

void insert (T elem, Node *prev)
create new node to store elem
insert at head if prev is NULL
otherwise insert after prev

void delete (Node *node) - remove node from list
void delete (T elem) - alt form of delete

 CS223 Page 4

void delete (T elem) - alt form of delete
traverse list to find elem's node
call node delete function

 CS223 Page 5

