
Ch1 - Software Development
just coding does not work for large projects
must analyze & design, then code
Phases

Problem Analysis & Specification
Design
Coding
Testing
Maintenance

Waterfall Model
classic model
phases done sequentially
not realistic as real projects may loop back to earlier phases
also called software lifecycle

Problem Analysis & Specification
homework assignments typically do this stage for you, but not
the real world
Ex: HW1 is a specification

Real world may have asked how to code a Line & Circle class
such that one could use one var to reference both

specification says what the program should do
preconditions are requirements for the program
postconditions are the consequences of running the program

have to take user request (sometimes vague) and formulate
specification

Design
take specifications & plan how to code
modularization

divide problem into parts that can be tackled separately
Top-Down Design

start w/ whole specification & subdivide into separate parts
each part may be further divided
continue until have small, manageable parts that can be
added together to solve the problem
solution typically has two parts

storage structures - how to store the data/ input
algorithms - actions, eg processing data

Object Oriented Design
top-down focuses on tasks
OOD focuses on objects that contain data & operations
object is an instance of a class

Pseudocode can be used for either type of design to express
how the design should be coded
Try to handle as many conditions as possible in the design

eg mem allocation failure, bad user input, no input
use design phase to optimize code

chose the storage structure (eg data structures) that are

Intro Sunday, September 09, 2007
1:21 PM

 CS223 Page 1

chose the storage structure (eg data structures) that are
suited for the problem
evaluate different algorithms to find which uses less time
and for memory

Coding
translate design into actual program
many languages can be used

if using OOD, need object oriented language
code should be readable & documented

makes easier for others to read
"self commenting code" is not always true
put comments for each class and/or function that states your
name, the date, its purpose, preconditions & post conditions
note any special segments of code
use readable class & var names

Testing
errors are to be expected
test code w/ as many types of input as possible (verification)
make sure code matches specifications (validation)
fix one error at a time

sometimes errors compound
fix one, see what it affects
if fix has unintended consequences, only have to check one
change

types of errors
syntax
run-time
logic

syntax errors
detected at compilation
long page could be caused by one error

run-time errors
program compiled but does not run as expected (crashes)
divide-by-zero, index-out-of-range

logic errors
program doesn't crash, but doesn't behave correctly
coding error (eg < instead of >)
unexpected user input
flaw in design

testing should try to find these errors
use a variety of input
test boundary values
test all execution paths possible
does NOT prove code is error-free, just that worked for what
was tested

Maintenance
fix any bugs missed in testing
add new features
update for new hardware, OS, etc
update for policy changes
eventually should result in obsolescence

code is retired
new program created
often most neglected part of lifecycle

 CS223 Page 2

Ch 2.1 - First Look at ADTs
What is an abstract data type?

function of object is defined without considering implementation
focus on what object does

Implementation
provides data storage & algorithms
says how to do object's tasks
don't need to know implementation details to be able to use
object

Ch 3.1 - Data Structures, ADTs & Implementations
data structures used to store data

can work w/ algorithm
make code easier (eg array vs many single value vars)
access data faster
use less memory

book refers to a data structure as storage
misleading since many data structures imply both storage &
accessing
eg a Stack stores data a certain way and has push() & pop()

Procedural & Object-Oriented Programming (Ch 3.6 & 4.1)
Procedural programming

design implemented a series of functions & variables
not encapsulated
action oriented (verb)

Object-Oriented programming
create objects that have vars & functions for a specific purpose
encapsulated
focuses on subject, not action (noun)

data structures can be implemented either way

Ch 9.1 Reusability & Genericity
don't want to reinvent the wheel
good data structure can store many kinds of data
overloading & templates can be used to "Write once, use many"
libraries can provide commonly used algorithms & data structures

eg math library provides square root
language has to support overloading and/or templates

some languages only support "aliases"
still have to recompile program to change stored data (eg int to
double)

Ch 14.1 Overview of OOP
Properties of OOP

Encapsulation
Inheritance
Polymorphism

Encapsulation
data storage & related functions bundled together
separate definition (header file) from implementation (cpp file)

 CS223 Page 3

separate definition (header file) from implementation (cpp file)
user's code should not rely on implementation details
implementation could be changed w/o affecting user's code

Inheritance
derive new classes from existing

add new features
create base classes

has general features
when doing OOD, have to consider structure of inheritance trees
(class hierarchies in book)

Polymorphism
meaning depends on context
compiler waits until run-time to associate function call w/
function body

 CS223 Page 4

