
16.1 Directed Graphs (digraphs)
like a tree but w/ no root node & no guarantee of paths between
nodes
consists of:

nodes/vertices - a set of elements
directed edges/arcs - a set of connections between nodes

incoming edges & outgoing edges
in-degree - number of incoming edges for a node
out-degree - number of outgoing edges for a node

cyclic vs acyclic
many applications

networks
dependencies
routes

Digraph ADT
Data: set of nodes & set of edges
Operations

construct an empty digraph
check if empty
destructor
insert a node
insert an edge
delete a node & all its incoming & outgoing edges
delete an edge
search for a value starting at a green node

Representing the data
Adjacency-Matrix representation

number the nodes 1 to n
have an n x n matrix of ints

[row i, col j] = 1 for edge from i to j
[row i, col j] = 0 for no edge

can have a weighted digraph by using weight instead of 1
can determine in-degree & out-degree easily

in-degree for node m is sum of set edges in m-th column
out-degree for node m is sum of set edges in m-th row

need a second 1D array of size n to store the values in each
node
issue: wasted space when graph is sparse (few edges)

Adjacency-list representation
less wasted space for sparse graphs
use an array or list for each node that represents the
outgoing edges
pair the edge list w/ the value stored in the node

Example:

Graphs & Digraphs Tuesday, November 06, 2007
10:34 PM

 CS223 Page 1

16.2 Searching & Traversing Digraphs
tree traversals are easier because all nodes reachable from root

no such guarantees w/ digraphs
may not be able to reach all nodes from any starting node

how to still visit each node once?
two methods for searching

depth-first search
go until a "leaf" is reached then backtrack

breadth-first search
visit all children of a node first then children's children

Depth-First Search
backtracking only possible if we can know which paths have
already been taken

mark nodes as processed
when backtracking, go back to previous node & see if it has any
unprocessed children

continue this check recursively until unprocessed child found
then process that child & any unprocessed nodes it reaches

a "leaf" is a node that has no unprocessed children
after processing all reachable node from given starting node,
some nodes may be unprocessed

unreachable nodes from that starting node
Pseudocode

visit the starting node v
mark v as processed
for each node w that is adjacent to v

if w is unprocessed
call depth-first search w/ w as starting node

Breadth-First Search
visit all children & then process each child's children in order

outputs a tree level by level
again, some nodes may be unreachable
Pseudocode

visit the start vertex

 CS223 Page 2

visit the start vertex
mark start vertex as processed
put start vertex in a queue
while the queue is not empty

remove vertex v from queue
for all vertices w that are adjacent to v

if w is unprocessed
visit w
mark w as processed
put w in the queue

Traversals
repeatedly call one search method until all nodes are processed
Pseudocode

initialize processed array w/ false for each node
while nodes are unprocessed

select a starting node from unprocessed nodes
call one of the searches w/ starting node

Shortest Path
find shortest path between any two nodes
Dijkstra's algorithm commonly used to find shortest path

book's method is for unweighted digraphs
visit start & label w/ 0 & mark
initialize distance to 0
add start to a queue
while destination is not processed and queue is not empty

remove v from queue
if label of v > distance

increment distance
for each node w that is adjacent to v

if w has not been processed
visit w & mark
label w w/ distance+1
add w to queue

end for
end while
if destination is not processed

issue "unreachable" error
else find path p[0]... by

initialize p[distance] to destination
for each k from distance-1 to 0

find a node p[k] that is adjacent to p[k+1] & has
label k

for weighted graphs:
find closest child to start
see if adding a child of the child is still less than using
another child of start
continue this sort of search until destination is reached
Example:

 CS223 Page 3

 CS223 Page 4

16.3 Graphs
Undirected graph -edges are bidirectional
No edges to self allowed like in digraph
Graph ADT

Data: set of nodes & set of edges between two distinct nodes
Operations

Construct empty
check if empty
destructor
insert a node
insert an edge
delete a node & associated edges
delete an edge
Search from a given node

Representation
Adjacency matrix is symmetric

edge i to j means also edge j to i
inefficient representation

Adjacency list also has each edge twice
Edge-List Representation

 CS223 Page 5

Edge-List Representation
have an edge node

contains the two vertices
an optional label or weight
two pointers to other edges

pointer 1 to another edge for node 1
pointer 2 to another edge for node 2

Connectedness
a connected graph has a path to all other nodes from a given
node
can be checked by doing a search from any node

if all nodes processed, graph is connected
works because all edges bidirectional

 CS223 Page 6

