16.1 Directed Graphs (digraphs)

like a tree but w/ no root node \& no guarantee of paths between nodes
consists of:
nodes/vertices - a set of elements
directed edges/arcs - a set of connections between nodes incoming edges \& outgoing edges
in-degree - number of incoming edges for a node out-degree - number of outgoing edges for a node
cyclic vs acyclic
many applications
networks
dependencies
routes
Digraph ADT
Data: set of nodes \& set of edges
Operations
construct an empty digraph
check if empty
destructor
insert a node
insert an edge
delete a node \& all its incoming \& outgoing edges
delete an edge
search for a value starting at a green node
Representing the data
Adjacency-Matrix representation
number the nodes 1 to n
have an $n \times n$ matrix of ints
[row i, col $j]=1$ for edge from i to j
[row i, col j] = 0 for no edge
can have a weighted digraph by using weight instead of 1
can determine in-degree \& out-degree easily
in-degree for node m is sum of set edges in m-th column
out-degree for node m is sum of set edges in m-th row
need a second 1D array of size n to store the values in each
node
issue: wasted space when graph is sparse (few edges)
Adjacency-list representation
less wasted space for sparse graphs
use an array or list for each node that represents the outgoing edges
pair the edge list w/ the value stored in the node
Example:

16.2 Searching \& Traversing Digraphs tree traversals are easier because all nodes reachable from root no such guarantees w/ digraphs may not be able to reach all nodes from any starting node how to still visit each node once? two methods for searching depth-first search
go until a "leaf" is reached then backtrack breadth-first search visit all children of a node first then children's children Depth-First Search
backtracking only possible if we can know which paths have already been taken
mark nodes as processed
when backtracking, go back to previous node \& see if it has any unprocessed children continue this check recursively until unprocessed child found then process that child \& any unprocessed nodes it reaches
a "leaf" is a node that has no unprocessed children after processing all reachable node from given starting node, some nodes may be unprocessed unreachable nodes from that starting node
Pseudocode
visit the starting node v mark v as processed for each node w that is adjacent to v if w is unprocessed call depth-first search w / w as starting node
Breadth-First Search
visit all children \& then process each child's children in order outputs a tree level by level again, some nodes may be unreachable Pseudocode
visit the start vertex
mark start vertex as processed
put start vertex in a queue
while the queue is not empty
remove vertex v from queue
for all vertices w that are adjacent to v
if w is unprocessed
visit w
mark w as processed
put w in the queue

Traversals

repeatedly call one search method until all nodes are processed Pseudocode
initialize processed array w/ false for each node
while nodes are unprocessed
select a starting node from unprocessed nodes
call one of the searches w/ starting node
Shortest Path
find shortest path between any two nodes
Dijkstra's algorithm commonly used to find shortest path
book's method is for unweighted digraphs
visit start \& label w/ 0 \& mark
initialize distance to 0
add start to a queue
while destination is not processed and queue is not empty remove v from queue
if label of $v>$ distance
increment distance
for each node w that is adjacent to v
if w has not been processed
visit w \& mark
label w w/ distance+1
add w to queue
end for
end while
if destination is not processed issue "unreachable" error
else find path $\mathrm{p}[0] .$. by initialize p[distance] to destination for each k from distance- 1 to 0
find a node $p[k]$ that is adjacent to $p[k+1] \&$ has label k
for weighted graphs:
find closest child to start
see if adding a child of the child is still less than using another child of start
continue this sort of search until destination is reached
Example:

Find path from B to F Initial

V	known	d	pres	
A	F	∞	0	
B	T	0	0	start
C	F	∞	0	
D	F	∞	0	
E	F	∞	0	
F	F	∞	0	destination
G	F	∞	0	

Now fill d for nodes reachable from B

C	F	2	B
D	F	1	B

Select smallest d \& mark as known $D \quad T \quad l \quad B$
Fill d in closer via D

A	F	3	D	
B	T	0	0	start
C	F	2	B	
D	T	1	B	
E	F	3	D	
F	F	9	D	destination
G	F	5	D	

C is smallest d, mark as known

A	F	3	D	
B	T	0	0	start
C	T	2	B	
n	T	1	B	

\check{E}	\dot{F}	3	D	
F	F	9	D	dist
G	F	5	D	
Select	A	8	E	8
A	update	d		
B	T	3	0	
C	T	0	0	start
D	T	2	B	
E	T	1	B	
F	F	3	D	
G	F	8	A	dist
Select	G	5	D	
F	F	G	G	
G	T	5	D	

Select F, done
F reached in distance G via $F-G-D-B$
16.3 Graphs

Undirected graph -edges are bidirectional
No edges to self allowed like in digraph
Graph ADT
Data: set of nodes \& set of edges between two distinct nodes Operations

Construct empty
check if empty
destructor
insert a node
insert an edge
delete a node \& associated edges
delete an edge
Search from a given node
Representation
Adjacency matrix is symmetric edge i to j means also edge j to i inefficient representation
Adjacency list also has each edge twice

Edge-List Representation

have an edge node contains the two vertices an optional label or weight two pointers to other edges
pointer 1 to another edge for node 1
pointer 2 to another edge for node 2
Connectedness
a connected graph has a path to all other nodes from a given node
can be checked by doing a search from any node
if all nodes processed, graph is connected
works because all edges bidirectional

