Wednesday, October 31, 2007

AVL Trees 805 PM

15.2 Tree Balancing: AVL trees
Order of insertion into binary search tree greatly affects balance
best order results in balanced tree
worst order results in linked list (lopsided tree)
AVL trees are a solution
named for creators, Russian mathematicians in the 1960s
Georgii Maksimovich Adel'son-Vel'skii
Evgenii Mikhailovich Landis
height-balanced tree
specialized binary search tree that has a balance factor
balance factor reflects the height difference of a node's
subtrees
balance factor is calculated by taking height of left subtree
and subtracting height of right subtree
balance factor is only allowed to be -1, O or 1
keeps height difference to at most 1
tree must be rebalanced when balance factor exceeds
these values
AVL Tree ADT
Member variables
a binary search tree that maintains the balance factor
Basic Operations
use the constructor, empty(), search() and traversals from
BST
insert an item & rebalance if needed
delete an item & rebalance of needed
AVL tree node
need to add a member variable for balance factor
so have data, balance factor and pointers to left & right children
Example trees w/ balance factors

O +\ —)
/A / N\ /N
o +1\ O +\ 0o
c /N
@ . 0 =)
o / N\

v /> ~ /7 \ o o

Rebalance Rotations

CS223 Page 1

4 rotations to restore balance factor
Right Rotation

C L
43 o
= /N
T 0 o<
o /
®)
Left Rotation
¢ .
O
)\
4y b = . / \ o
W o]
\ G
o
Left-Right Rotation
< A rolalong needed
+3
> \/ \ 0 /c.
- o \
. /N F e
o +\Q, /
/ b
(@)
) a/ \d
@ Rasrores \Oa\\once, Q-—cé—or
-\
bl Ve
ao/ \oo\ \0_(1
Right-Left Rotation
P Q H—bu?r\) g\ T’D—\w\—;\y_s
/ N\ . -~

CS223 Page 2

Ca) ﬂg«x?r\, NeSdores \oa\w\cg g-\c\-or‘
<
C-l-\ \oi
s/ at \e

Rotation Details - Insertion case
Apply rotation when node's balance factor is +2 or -2 & is
nearest ancestor to inserted node
Cases:
Right rotation
inserted node is in left subtree of left child of unbalanced
node (+2)
Left rotation
inserted node is in right subtree of right child of
unbalanced node (-2)
Left-right rotation
inserted node is in right subtree of left child of
unbalanced node (+2)
Right-left rotation
inserted node is in left subtree of right child of
unbalanced node (-2)
Rotation Pseudocode
Right Rotation
A is unbalanced node
B is left child
set parent of B to A's parent
set parent of Ato B
set A's left to B's right
(value in B's right is between value of A & value of B)
set B's right to A

P i
| _
L

7/ \ /R

cm—

”~ A - AN

CS223 Page 3

Left Rotation
A is unbalanced node
B is right child
set parent of B to A's parent
set parent of Ato B
set A's right to B's left
set B's left to A
Left Right Rotation

A C

VRN 2 - N\ / "\

N FOY-P
VAANVAN

Via YW skps

\ Volede f\\b\\5r
/RN roree et ax A
atr B
rotate left at B (node A's left child)
rotate right at node A
Alternate Method:
set C's parent to A's parent
set A's parent to C
set B's parent to C
set B's right to X (C's left)
set A's left to Y (C's right)

/
£/

CS223 Page 4

set C's left to B
set C's right to B

Right-left rotation
rotate right at B (node A's right child)
rotate left at node A

Rotation on Deletion
more difficult notations than on insertion
can delete nodes & leaves
Runtime
since tree is balanced, searches are O(log2n)
overhead to rebalance
increases inserts delete runtime
studies show 45% of inserts require rotations
approx half are double rotations
if searching is primary operation, fast search outweighs slower
insert

CS223 Page 5

