
15.2 Tree Balancing: AVL trees
Order of insertion into binary search tree greatly affects balance

best order results in balanced tree
worst order results in linked list (lopsided tree)

AVL trees are a solution
named for creators, Russian mathematicians in the 1960s

Georgii Maksimovich Adel'son-Vel'skii
Evgenii Mikhailovich Landis

height-balanced tree
specialized binary search tree that has a balance factor

balance factor reflects the height difference of a node's
subtrees
balance factor is calculated by taking height of left subtree
and subtracting height of right subtree
balance factor is only allowed to be -1, 0 or 1

keeps height difference to at most 1
tree must be rebalanced when balance factor exceeds
these values

AVL Tree ADT
Member variables

a binary search tree that maintains the balance factor
Basic Operations

use the constructor, empty(), search() and traversals from
BST
insert an item & rebalance if needed
delete an item & rebalance of needed

AVL tree node
need to add a member variable for balance factor
so have data, balance factor and pointers to left & right children

Example trees w/ balance factors

Rebalance Rotations
4 rotations to restore balance factor

AVL Trees Wednesday, October 31, 2007
8:02 PM

 CS223 Page 1

4 rotations to restore balance factor
Right Rotation

Left Rotation

Left-Right Rotation

Right-Left Rotation

 CS223 Page 2

Rotation Details - Insertion case
Apply rotation when node's balance factor is +2 or -2 & is
nearest ancestor to inserted node
Cases:

Right rotation
inserted node is in left subtree of left child of unbalanced
node (+2)

Left rotation
inserted node is in right subtree of right child of
unbalanced node (-2)

Left-right rotation
inserted node is in right subtree of left child of
unbalanced node (+2)

Right-left rotation
inserted node is in left subtree of right child of
unbalanced node (-2)

Rotation Pseudocode
Right Rotation

A is unbalanced node
B is left child
set parent of B to A's parent
set parent of A to B
set A's left to B's right

(value in B's right is between value of A & value of B)
set B's right to A

 CS223 Page 3

Left Rotation
A is unbalanced node
B is right child
set parent of B to A's parent
set parent of A to B
set A's right to B's left
set B's left to A

Left Right Rotation

rotate left at B (node A's left child)
rotate right at node A
Alternate Method:

set C's parent to A's parent
set A's parent to C
set B's parent to C
set B's right to X (C's left)
set A's left to Y (C's right)
set C's left to B

 CS223 Page 4

set C's left to B
set C's right to B

Right-left rotation
rotate right at B (node A's right child)
rotate left at node A

Rotation on Deletion
more difficult notations than on insertion
can delete nodes & leaves

Runtime
since tree is balanced, searches are O(log2n)
overhead to rebalance

increases inserts delete runtime
studies show 45% of inserts require rotations

approx half are double rotations
if searching is primary operation, fast search outweighs slower
insert

 CS223 Page 5

