
Salvage yard
Database

CMPS 342, Database Systems

Joel Medina

Simranjeet Singh

Table of Contents

 Phase I:

 A. Fact-Finding Techniques and Information Gathering...................................4 - 6
 A-1. Fact-Finding Techniques...4

 A-2. Introduction to the Business..4
 A-3. Part of Business for which the database will be designed.................................4
 A-4. Itemized descriptions of Entity sets and relationship sets.................................5
 A-5. User Groups, Data views and Operations..6
 B. Conceptual Database Design...7 - 12
 B-1. Entity Set Description..7
 B-2. Relationship Set Description..11
 B-3. Related Entity Set...12
 B-4. E-R Diagram...12

 Phase II:

 ER Model to Relational Model..13 - 19
 A. History and explanation of the ER and relational models...................................13
 B. Relational database schema...15
 C. Relation Instances..17
 D. List of Queries in Relational Algebra and Calculus..19
 Phase III:

 Oracle Database Management System..21 - 29
 A. Normalization of Databases..21
 B. Normalization of our database..23
 C. Schema Objects in Oracle...24
 D. Creation of Tables...26
 E. Queries in SQL..29

 Phase IV:

 A. Common Features in Oracle PL/SQL and MS Trans-SQL.................................31
 A-1 Components which consist of PL/SQL and Trans-SQL...................................31
 A-2 Purpose of Stored Subprogram...31

 A-3 Benefits of calling stored subprogram over sending a dynamic SQL to
 front-end to DBMS server..31
 B. Oracle PL/SQL...32 - 34
 B-1 PL/SQL program structure, control statements, cursors.....................................32
 B-2 What is a stored procedure and syntax for creating a stored procedur..............33
 B-3 What is a stored function and syntax for creating a stored function..................33
 B-4 What is a package and syntax for creating a package...34
 B-5 What is a trigger and syntax for creating a trigger..34
 C - Oracle PL/SQL Subprogram..35 - 39
 C-1 Code and Documentation..35
Phase I

A. Fact-Finding Techniques and Information Gathering
A-1. Fact-Finding Techniques

In order to create the database familiarity with the type of business which will be worked had to be made. Luckily one of our teammate owns a business of this type which greatly helps understand what is needed by the business in terms of the database to be created. We both discussed several variables of the business which will be needed to be depicted in the database.

A-2. Introduction to Business

The business which will be used to model a database for in this project will be a salvage yard or sometimes know as a wrecking yard which buys and sells parts used specifically on large semi trucks. Activities of the business include selling parts to customers, buying parts from customers, buying parts from other businesses, fixing parts in order to raise its price and keeping track of all parts in stock.

A-3. Part of Business for which the database will be designed

The part of the business for which a database will be designed will be the business’s inventory, meaning all of the parts in stock. The database will be able to store and manage records of all the parts which will be in the yard or warehouse of the business. The database will include details on the parts such as prices, quantity and quality of the parts. Also the database will include a set of all of the customers who have at one point bought from the business and/or are planning on buying in the future. And to keep track of the business’s profits, invoices and sales records will also be kept in the database. Some of the major entity sets which will be depicted in the database include Parts, Customers, vehicles driven by the customer, requests by the customer, invoices, and sales records. Relationships between these entities exist and include “Needs” between Customer and Parts, “Sell” between Parts and Invoice, “Issued” between Customer and Invoice, “Owns” between Customer and Vehicle, “Saved to” between Invoice and Sale record, “Searching” between Businesses and Parts and “Found” between Businesses and Location.

 A-4. Itemized descriptions of Entity sets and relationship sets

The main entity of the database which the user will have the most interaction with will be the part entity. An instance of this entity will be created to contain a part of a semi truck which may or may not be in stock at the wrecking yard. One example may be the front bumper to a certain make and model of a semi truck. Several attributes which correspond to this entity will be mapped on the UML diagram along with it. The Key attribute for the “Part” entity will be the part ID which will be a number issued to the part and which will be unique to every part in the database. Other attributes which will correspond to the parts entity are “Name”, “Quantity”, “Price paid”, “Price Sold”, and a “description”, all of which should be self explanatory.

Another very important entity which will be part of the database is the “Customer” entity. The purpose for this entity is to keep track of parts which the customer may have requested and records of what a certain customer has bought from the business. Instances of this entity will be created when a customer decides to buy a part from the business. The customer will have to register into our system by providing their name, address, phone number, and email. Along with that data a customer number will also be issued and will make up the list of attributes which will correspond to that particular customer or instance of the “customer” entity. The key attributes for this entity are the person’s phone number, Email, and customer number.

Requests is an entity which will contain information on what a certain instance of the customer entity needs, or has requested. The purpose of this entity is to keep customers buying from the business exclusively and to keep all customers satisfied with the manner in which business is being done. It will be easy for a customer to simply pick up the phone and let a representative know that they are looking for a certain part, the representative will then check the database and let the customer know whether or not the part is in stock. If the part is not in stock then outside businesses will be contacted which will be explained in the following entity description. The attributes which belong to this entity are “Date”, “Customer Number”, “Part” and “Pay Price” all of which should be self explanatory.

As discussed previously, a business entity will also be created to keep all instances of outside businesses which may be contacted if needed. The purpose for this is simply to keep customers satisfied. If a part which has been requested by a customer is not in our inventory then one of the businesses in the database will be contacted and a part will be purchased from them to satisfy the customer. The attributes which correspond to the business entity are “Name”, “address”, “phone”, and “email”.

An entity which will have a relation to the customer is the “Sales record” entity. This entity is important because all its instances will be used to calculate the businesses profits in a late discussed entity. A sale record is the record for a single sale to a single customer which could be of several parts. It will also help in keeping records in the occasion of a returning customer requesting records of what they have bought. Or a customer returning a part to the business. Attributes which correspond to this entity are “Invoice Number”, “Items Bought”, “Payment Status”, “Date”, and “Buyer”.

The final entity is the “Sales” entity. This entity is a derivative all of the aggregated “Sales Record” instances, and only one instance of this entity exists. This entity will be used to hold all of the business’s financial information in terms of sales and profits. Every time a sale is made or an item is bought, this entity will be updated to show how much has been made, or invested. The attributes which correspond to this entity are “Total transactions”, “Total Bought”, “Total Sales”, and “Total Profit“

A-5. User Groups, Data views and Operations

The groups which will have access to the database will be mainly sales representatives of the business or as requested by the customer. The main entities which the users will be able to view and alter are “Customer”, “Part”, and “Businesses” in order to have full interactivity with the customer by satisfying their demand, these entities need to be accessed. The “Customer” entity in order to pull up records, update information, or add a request. The “Part” entity in order to add a part, search for a part, or set a price for a part. And the “Businesses” entity in order to search for businesses which may have parts or to add a business which some type of negotiation has been made with.

B. Conceptual Database Design

 B-1. Entity Set Description

B-1-1. Entity Parts:

* Name: Parts

 * Description: The Parts entity will store parts description. Each part will have part number along with the part name. Part number will be of 10 digit unique. Quantity will show how many parts are in stock. price purchased will also be shown along with sale price. In doing so we will know what is the least amount, we can sell parts for.

* Attribute description

	Name
	Pname
	Pno
	Qty
	Price_purchased
	Set_price

	Description
	Part Name
	Part number
	Quantity in stock
	US dollars used to pay for part
	Current Price

	Domain/Type
	Varchar(50)
	string
	int
	Double
	Double

	Value - Range
	ASCII
	10
	int >=0
	Positive number
	Positive number

	Default value
	Passed value
	Passed value
	Passed value
	Passed value
	Passed value

	Null Allowed?
	NO
	NO
	NO
	NO
	NO

	Unique?
	YES
	NO
	NO
	NO
	NO

	Single or Multi-value?
	Single
	Single
	Single
	Single
	Single

	Simple or Composite?
	Simple
	Simple
	Simple
	Simple
	Simple

* Candidate keys: Pname, Pno

* Primary keys: Pno

* Weak/Strong: strong
 * Fields to be indexed: Pno

B-1-2. Entity Businesses:

* Name: Businesses

 * Description: The Businesses entity will store all the information for our related business. These businesses are nearby salvage yards that also sell semi-truck parts. Their business information will be stored, in case we do not have a part that our customer wants, we will call to check that part from them. New business can be added under addBusiness. Added business can be edited under editBusiness. A Business can be removed under removeBusiness.

* Attribute description

	Name
	Bname
	Address
	Phone
	E-mail
	Contact person

	Description
	Business Name
	Business location
	Contact number
	Contact e-mail
	Person our business regularly talks to

	Domain/Type
	Varchar(50)
	Varchar(100)
	Double
	Varchar(50)
	Varchar(50)

	Value - Range
	ASCII
	ASCII
	Positive number
	ASCII
	ASCII

	Default value
	Passed value
	Passed value
	Passed value
	Passed value
	Passed value

	Null Allowed?
	NO
	NO
	NO
	NO
	NO

	Unique?
	NO
	NO
	YES
	YES
	NO

	Single or Multi-value?
	Single
	Single
	Single
	Single
	Single

	Simple or Composite?
	Composite
	Simple
	Simple
	Simple
	Simple

* Candidate keys: Phone and E-mail

* Primary keys: Phone

* Weak/Strong: strong

 * Fields to be indexed: Phone

B-1-3. Entity Part Order:

* Name: Order

 * Description: The Order entity will have information on the part that customer wants. When customer comes to buy a part, an order will be created. If the part is in our inventory, then we will sell it. If the part in not in stock, then this order will be used to search a part from other businesses. Order will have information that identifies what part is ordered and when it was ordered. Order will be deleted if part is sold or part could not be located.

* Attribute description

	Name
	Cname
	Cphno
	Pno
	Date

	Description
	Customer Name
	Customer phone number
	Part number
	Date of order

	Domain/Type
	Varchar(50)
	Char(10)
	integer
	date

	Value - Range
	ASCII
	Numeric char
	10 digit
	Present date

	Default value
	Passed value
	Passed value
	Passed value
	Passed value

	Null Allowed?
	NO
	NO
	NO
	NO

	Unique?
	NO
	YES
	NO
	NO

	Single or Multi-value?
	Single
	Single
	Single
	Single

	Simple or Composite?
	Simple
	Simple
	Simple
	Simple

* Candidate keys: date, Cphno

* Primary keys: Cphno

* Weak/Strong: strong

 * Fields to be indexed: Cphno

 B-1-4. Entity Customer:

* Name: Customer

 * Description: Instances of the Customer entity will have information for the customers who have chosen to register into our system and wish to request, buy or sell parts. This entity has been created in order to keep track of business which has been done between a particular customer and the business itself.

* Attribute description
	Name
	Cname
	Address
	Cphno

	Description
	Business Name
	Business location
	Contact number

	Domain/Type
	Varchar(50)
	Varchar(100)
	Double

	Value - Range
	ASCII
	ASCII
	Positive number

	Default value
	Passed value
	Passed value
	Passed value

	Null Allowed?
	NO
	NO
	NO

	Unique?
	NO
	NO
	YES

	Single or Multi-value?
	Single
	Single
	Single

	Simple or Composite?
	Composite
	Simple
	Simple

* Candidate keys: Cname, Cphno, Address

* Primary keys: Cphno

* Weak/Strong: strong

 * Fields to be indexed: Cphno

B-1-5. Entity Invoice:

* Name: Customer

 * Description: Invoice will hold

* Attribute description

	Name
	Cname
	Cphno
	Sale_no
	Date

	Description
	Customer Name
	Customer phone number
	Sale number
	Purchase Date

	Domain/Type
	Varchar(50)
	Char(10)
	integer
	date

	Value - Range
	ASCII
	Numeric char
	
	Present date

	Default value
	Passed value
	Passed value
	Passed value
	Passed value

	Null Allowed?
	NO
	NO
	NO
	NO

	Unique?
	NO
	YES
	YES
	NO

	Single or Multi-value?
	Single
	Single
	Single
	Single

	Simple or Composite?
	Simple
	Simple
	Simple
	Simple

* Candidate keys: Cname, Cphno, Sale_no

* Primary keys: sale_no, Cphno

* Weak/Strong: strong

 * Fields to be indexed: Cphno
B-2. Relationship Set Description

 Relationship For:

* Name: For

* Description: The For relationship is a relation between Order entity and Parts entity. It describes that the Order is For Parts.

*Entity set involved is Order and Parts.

cardinality is 1..1 Order to 1.. Parts.

*There is no descriptive field.

*Participation constraints is total/mandatory.

 Relationship Searching:

* Name: Searching

* Description: Searching relationship is a relation between Parts entity and Businesses entity. It describes that the requested part could not be found in Parts and now we are Searching for it contacting other businesses.

*Entity set involved is Parts and Businesses.

cardinality is 1.. Part to 0..* Businesses.

*There is no descriptive field.

*Participation constraints are partial.

 Relationship Request:

* Name: Request

* Description: Request relationship is a relation between Customer entity and Order entity. It shows that Customer Requests parts for which the Order is created.

*Entity set involved is Customer and Order.

*cardinality is 1..1 Customer to 1..1 Order.

*There is no descriptive field.

*Participation constraints is total/mandatory.

 Relationship Sales:

* Name: Sales

* Description: Sale relationship is a relation between Parts entity and Invoice entity. It describes that the when part is sold, then invoice is created.

*Entity set involved is Parts and Invoice.

cardinality is 1.. Part to 1..1 Invoice.

*There is no descriptive field.

*Participation constraints is total/mandatory.

 Relationship Issued:

* Name: Issued

* Description: A relation between the Customer entity and Invoice *Entity set involved is Customer and Invoice.

cardinality is 1.. Customer to 1..1 Invoice.

*There is no descriptive field.

*Participation constraints is total/mandatory.
B-3. Related Entity Set

 * None of the entity is neither generalization of something, nor are they specialization of some entity. Hence, there are no constraints.

B-4. E-R Diagram

[image: image1.jpg]PART ORDER

Coame
PARTS BUSINESSES =
= —)
Poo Adires - Order
Pheme
- Emsl e
sare Conttpamen Qumiy
b Bz
e . o)
S | e
CUSTOMER
INVOICE —
ey
= =
Cpmo | -
Ery s
5ad SaiCuome
ey
P
@
e

Phase II

ER Model to Relational Model
A. History and explanation of the ER and relational models

Entity-Relationship (ER) model was created in 70's at the time and environment such a model was needed. Model is used during the requirements analysis to show information needed for database. Entity –Relationship (ER) modeling is an important step in information system design and software engineering. One of the requirements of such a “distributed system” was to make the files and databases in different nodes of the network compatible with each other. The ER model was motivated by this requirement. One of the key techniques in ER modeling is to document the entity and relationship types in a graphical form called, Entity-Relationship (ER) diagram. The ER model is based on logic, modern algebra, set theory and more. Entity-relationship (ER) model is a popular high-level conceptual data model. It is used in the design of conceptual schemas for database applications. Schemas for the database application can be displayed by means of the graphical mutation known as ER diagrams. ER model describes data as entities, relationships, and attributes. The basis object that the ER model represents is an entity, which is a thing in the real world with an independent existence. In the 80’s, many vendors and user organizations recognized the need for such that could keep track of information resources in an organization and to serve as the focal point for planning, tracking, and monitoring the changes of hardware and software in various information systems in an organization.

The Relational Model is a clean and simple model that uses the concept of a relation using a table rather than a diagram. Relational Model was discovered because of its need. In 1969 Dr. Edgar F. Codd published the first use of the relational model. Codd's paper was primarily concerned with what later came to be called the structural part of the relational model. Codd’s discovery, his creation was a breath of fresh air for those digging through data banks, trying to categorize and define data. When he invented this model, he truly may have not foreseen what an incredible impact it would have on the world of data (from website). Relational model represents the database as a collection of relations. each relation resembles a table of values. Each row in the table represents a collection of related data values. A row is called a tuple. Column header is called an attribute. Table is called a relation. The data type describing the types of values that can appear in each column is represented by a domain of possible values. Major terms are domain, tuple, attribute and relation.

- Comparison of two different models

There are several differences between the ER model and the Relational Model. ER Model uses the Mathematical Relation Construct to Express the Relationships between Entities. The relational model and the ER model both use the mathematical structure called Cartesian product. In some way, both models look the same – both use the mathematical structure that utilizes the Cartesian product of something. ER model is defined as an ordered tuple of “entities.” In the relational model, a Cartesian product of data “domains” is a “relation,” while in the ER model a Cartesian product of “entities” is a “relationships.” In other words, in the relational model the mathematical relation construct is used to express the “structure of data values,” while in the ER model the

same construct is used to express the “structure of entities.” By the original definition of

relation by Codd, any table is a relation. The cardinality information is explicit in the ER model, and some of the cardinality information is not captured in the relational model.

The conversion basic idea is to build a table for each entity. If there is a relationship, then create a table for each relationship too if necessary. Make a column in the table for each attribute in the entity set. Primary should be indicated whose values are used to identify tuples in the relation.

Weak entity set cannot exist alone. Primary key of weak entity set are made of discriminator and foreign key.

Simple entity is like address but if it needs to be divided into smaller subparts, for example a zip code is required, then address becomes a composite entity. The conversion issue can be of weather to describe attribute or just its component.

Age is a single valued attribute of a person. Degree attribute is multivalued since a person can have multiple degrees. The conversion issue can be weather we are referring an attribute as single or multivalued.

For relationship, types with one-to-one, Make table with columns for each participating entity set's primary key. For relationship types with many-to-one/wise versa, Make table with columns for "many" side entity set and column for "one" side entity set's primary key. For union, build a table with as many columns as there are attributes for the union of the primary keys of all participating entity sets. The primary key of this table is the union of all primary keys of entity sets that are on "many" side. If there are more than two entities then we have to create a table for each subclass entity set include all attribute of that subclass entity and attributes of super class entity set. Recursive relationship connects a single class type to itself. For example if employee is also a manager. Then in this case, we have to include candidate key of name and phone only once. Then along with other attributes, we will include that person's id in each role in the table.

Insert, delete, and update are the entity constraints. They are used to modify database.

Primary key's value is used to identify tuples in the relation. It is distinguished by underlining.

Referential integrity constraint is specified between two relations and is used to maintain the consistency among tuples in the two relations. Entities' foreign key must refer to other entities' relation. That foreign must be present in its entity before it can be used as foreign key to make a relation.

Constraints that cannot be directly expressed in schemas of the data model, and hence must be expressed and enforced by the application programs. for example in university database application, advisor will be notified if gpa of a student falls below a certain number.

B. Relational database schema
[image: image2.png]Customer

[Cname Cphno
[K
Part
[Pname’ Pno Price_purchased | Set_price | Qty
Invoice ? [
Date Cname Sale_no Cphno
Sale .
[Sale_no Pno Qty Date
Ordered
[Chname Pno |[Date

o]

‘3—
—|B
B

For the CUSTOMER Schema:

Attribute Domain:

Cname: The set of character strings that represent names of persons.

Cphno: The set of ten-digit phone numbers valid in the United States.

Contstraints:

Cname:

Cphno: Must have a value within the domain (never NULL).

For the PART Schema:

Attribute Domain:

Pname: The set of character strings that represent the names of a vehicle part

Pno: The set of 10 digit strings that are assigned to a certain type of part

Price_purchased: The set of real numbers which represent the amount of

US dollars used to pay for the part.

Set_price: The set of real numbers which represent the price at which the part is

set.

Qty: The set of integers greater than or equal to zero which represent the quantity

in stock for that part

Contstraints:

Pname: Cannot be NULL.

Pno: primary key, must have a value within domain (cannot be NULL)

Price_purchased: No contraint

Set_price: No constraint

Qty: must have value of zero or greater.

For the INVOICE Schema:

Attribute Domain:

Date: The set of string of 6 digits which represent the date at which the invoice

was issued.

Cname: The set of character strings that represent names of persons.

Sale_no: The set of 10 digit strings pertaining to individual sales

Cphno: The set of ten-digit phone numbers valid in the United States.

Contstraints:

Date: Cannot be NULL.

Cname: Must match Cphno of some tuple in the CUSTOMER relation.

Sale_no: Must match Sale_no of some tuple in the SALE relation.

Cphno: Must match Cphno of some tuple in the CUSTOMER relation.

For the SALE Schema:

Attribute Domain:

Sale_no: The set of 10 digit strings pertaining to individual sales

Pno: The set of 10 digit strings that are assigned to a certain type of part

Qty: The set of integers greater than or equal to zero which represent the quantity

of parts sold for each sale

Date: The set of string of 6 digits which represent the date at which the sale took

place.

Contstraints:

Sale_no: Primary key, must have a value within the domain (cannot be NULL)

Pno: must match Pno of some tuple in the PART relation.

Qty: Cannot be NULL.

Date: Cannot be NULL.

For the ORDER Schema:

Attribute Domain:

Cname: The set of character strings that represent names of persons.

Cphno: The set of ten-digit phone numbers valid in the United States.

Pno: The set of 10 digit strings that are assigned to a certain type of part

Date: The set of string of 6 digits which represent the date at which the order took

place.

Contstraints:

Cname: Must match Cname of the same tuple to which Cphno matches.

Cphno: Must match Cphno of some tuple in the CUSTOMER relation.

Pno: Must match Pno of some tuple in the PART relation.

Date: Cannot be NULL.

C. Relation Instances
CUSTOMER
	Cname
	Cphno

	Jon Doe
	18182347656

	Jerry Thomson
	16618993243

	Michael Jordan
	15599090234

	Sam Fitzgerald
	16619082343

	Arnold Herring
	12138984327

	Drake Oliver
	16613310523

	Henry Ford
	16618273456

	Susan Smith
	16618324444

	Garry Hill
	13103345544

	Marty McFly
	18184568677

PART

	Pname
	Pno
	
	price
	Qty

	Muffler
	1234567890
	
	79.99
	21

	Wind Shield
	0987654321
	
	199.99
	15

	Radiator
	1357909876
	
	99.99
	40

	Clutch
	9875857483
	
	249.99
	26

	Brakes
	3454443234
	
	65.99
	38

	Steering wheel
	0988859843
	
	49.99
	15

	Fuel Tank
	2878758694
	
	149.99
	6

	Head lights
	1234432434
	
	89.99
	13

	Rear Fenders
	1289687854
	
	299.99
	17

	Oil filter
	3454565432
	
	29.99
	57

INVOICE

	Date
	Cname
	Sale_no
	Cphno

	020211
	Michael Jordan
	0012349095
	15599090234

	010111
	Michael Jordan
	0012334909
	15599090234

	073011
	Arnold Herring
	0012490958
	12138984327

	082011
	Marty McFly
	0012690994
	18184568677

	042311
	Henry Ford
	0012390999
	16618273456

	020405
	Sam Fitzgerald
	0000000001
	16619082343

	071507
	Marty McFly
	0000034586
	18184568677

	073109
	Gary Hill
	0005439855
	13103345544

	050310
	Susan Smith
	0010000000
	16618324444

	032610
	Drake Oliver
	0009895000
	16613310523

D. List of Queries in Relational Algebra and Calculus
1. List all invoices made between 02/01/11 and 03/01/11

(((Invoice) date >= 020111 V date <= 030111

{ i | ((i) Invoice (i) ^ (i.date >= 020111 V i.date <= 030111)}

{<d,c,s,p> | Invoice(d,c,s,p) V (d>=020111 V d<=030111)}

2. List name(s) of the most expensive part(s).

((Part - (((Part p1 X Part p2) p1.price>p2.price ^ p1 != p2)

3. List names of customers who ordered radiator.

 ((((Customer c X Order o X Part p) (c.phno = o.phno ^ o.pno = p.pno ^

p.pname = ‘radiator’))

{c.name | customer (c) ^ ((o)(Order (o) ^ c.phno = o.phno) ^ ((p)(Part (p) ^ o.pno

= p.pno) ^ p.pname = ‘radiator’}

{<c,n> | customer(c,n) ^ Order(c,n,p,_) ^ ((m) Part(m,p,_,_,_) ^ m = ‘radiator’}

4. List invoices which belong to ‘Jon Doe’

((((Customer c X Invoice i) (c.phno = i.phno ^ c.cname = ‘Jon Doe‘)

{i | Invoice(i) ^ ((c)(Customer (c) ^ c.name = ‘Jon Doe’ ^ c.phno = i.phno)}

{<d,c,s,p> | Invoice(d,c,s,p) ^ ((p)(Customer(c,p) ^ c = ‘Jon Doe’)}

5. List the part(s) which we have the most in stock

((Part p1 - ((((Part p1 X Part p2) (p1.qty > p2.qty ^ p1 != p2)))

{p1 | Part (p1) ^ ((p2)(Part (p2) p1.qty > p2.qty ^ p1 != p2)}

{<p,n> | Part (p,n,_,_,q) ((p2) Part(p2,n2,_,_,q2) ^ q1>q2 ^ p1 !=p2)

6. List customers who have ordered each of all parts

((c.cphno(customer c)(((c.phno(Order o) (((p.pno(Part p)))

Phase III

 Oracle Database Management System

A. Normalization of Databases

Insertion Anomalies

An insertion anomaly occurs when a relation in a relational database design is designed poorly so that when tupules for that relation are inserted, problems erupt. One problem which may occur during insertion of data is if for example a relation which can be split into two simpler relations is not split, when inserting data which corresponds to only one of the relations which is joined, then the other relation in the join will have NULL values in its primary keys, which violate the entity integrity for relations. To solve this problem, relations which seem to be joins of two simpler relations must be separated into those two relations.

Deletion Anomalies

Deletion Anomalies also occur when a relation is actually the join of two simpler relations. When a last tuple of a relation is deleted, the other relation in the join is also deleted completely. This is a problem because the relation which was deleted unintentionally may be significant even if it does not have any other tuples in relations which it has relationships with.

Modification Anomalies

Modification anomalies occur when for example in the case of the relation which is actually the join of two smaller relation, if a tuple of that relation is updated of modified, then all tuples of that corresponding attribute must also be changed to match. This redundancy can actually be handled by one sql query, but it is much more beneficial to simplify the relation in order to avoid any type on anomalies.

Normalization

The process of normalization of a database can be described as analyzing schemas based on their functional dependencies and primary keys and manipulate them and/or create new relations to minimize redundancy and any anomalies. A Normalized schema should posses two very important properties which are the nonadditive join or lossless join property and the dependency preservation property. The lossless join property guarantees that no spurious or invalid tuples are created when two relations are joined, this may occur by splitting a relation into two relations incorrectly. The dependency preservation property guarantees that each functional dependency is represented in some individual relation after the decomposition of a relation which may appear to be a join of two simpler relations. The following descriptions of forms of normalization are called the normal forms, and are known as First, Second, Third and Boyce-Codd Normal forms in that order, each being more normalized than the last.

First Normal Form

The main objective in the first normal form is to have attributes which are not multi-valued or composite attributes. This form aims at having attributes which for all tuples, no tuple have composite attributes. If it is the case that a tupule has composite attributes then the first normal form must be achieved by one of three ways: Creating a new relation, expanding the key and adding tuples, and extending the composite attribute into a number of attributes. To create a new relation from the attribute which is a composite attribute, that attribute must first be removed from the main relation and added to a new relation along with the primary key of that relation. The primary key of this new relation will now be the combination of the previous composite attribute and the primary key of the first relation, now a foreign key of the second. Another way to reach the first normal form is to expand the key and tuples for every attribute in the composite attributes, this may become a problem because redundancy occurs in keys, and all other attributes. The primary keys for the new formed relation will now be the combination of the previous primary key and the attribute which before was composite. The final way to reach first normal form is to take the composite attribute and extend it into a set number of attributes (the maximum possible number of values which that composite attribute may have. This last option may arise many problems because many tuples which do not reach the max number of values will have NULL values and querying will become much difficult.

Second Normal Form

To reach the second normal form in a relation, attributes of the relation must be full functionally dependent. If a relation is not in that form, then it can be converted to be in second normal form by taking the attributes and distributing it to its dependants, creating new relations.

Third Normal Form

The third normal form consists of eliminating transitive dependencies within attributes of a relation. The third normal form may also be reached by decomposing the relation at the transitive dependent attribute.

Boyce-Codd Normal Form

The Boyce-Codd Normal Form is just slightly more normalized than the third normal form. For a relation to be in Boyce-Codd Normal form it must have all dependencies be super keys.

B. Normalization of our database

Currently our wrecking yard inventory and order management database seems to be in need of normalization. For example the cname attribute may hold several values for people with a middle name and so on. This attribute will have to be split into two new attributes named fname and lname, the middle initial is insignificant because any identical first and last names may be distinguished by the phone number attribute. With this change, the database design seems to be in Boyce-Codd Normal form because functional dependencies in all relations are super keys. The Normalized form of the database can be depicted by the following diagram.

Customer(fname, lname, phoneNo)

Part(Pname, Pno, Price, Qty)

Invoice(fname, lname, saleNo, phoneNo, Date)

Order(fname, lname, phoneNo, Pno, Date)

SQL *Plus

SQL *Plus is a tool which comes with the package download of the oracle 11g DBMS. It is a tool with a command line user interface which can be used to create, manage and query data from an oracle database. SQL *Plus can execute both SQL commands and queries as well as PL/SQL blocks, either from interactive commands or from a script. I will be using SQL *PLUS to create the database and also to execute the list of queries from the previous phase along with some additional queries.

C. Schema Objects in Oracle

A schema object is a logical structure of data which when combined with other schema objects together create a schema. In Oracle databases the schema objects are stored logically within a table space of the database. Here are the Schema Objects which are allowed in the Oracle DBMS.

Tables

Tables are the main form in which relational database systems store the data of a relation or entity. Tables structure the attributes of a relation in columns and the tuples of the instances of relations in rows. They also allow the use of primary keys, foreign keys and constraints.

Views

Views are the result of a specific query and are presented as the query script is run or the query is written directly on the command prompt. No storage is needed for views since they are only virtual tables and exist as an instance of the tuples which satisfy the query restrictions. Only the command which returns the views can be stored as scripts, but not the views themselves, because the results to those queries may actually change as the database changes.

Sequences

A sequence is an ordered list of numbers which can be used for several reasons in which every assigned number needs to be unique. In relational databases sequences or sequence generators can be used to create ID numbers for a specific relation which can then be used as the primary keys for that relation.

Synonyms

Synonyms can be described as aliases given to schema objects in order to simplify access to the schema objects by other users who are not the administrator of the database to whom the schema objects correspond. Synonyms may be given to tables, views, sequences or any other schema objects.

Indexes

Indexes are data structures that can be applied to tables in order to quickly search through a table or access a certain tuple. Storage is taken up in the table to which the index is applied to in the form of an additional column which will hold the unique values for each tuple. The advantage to having indexes, is that when searching through tables, or for certain queries, time can be saved if the indexes are used.

Clusters

Clusters are used in relational database systems to combine two or more tables which have a common column (attribute) into one large table (the cluster). This improves the running time of any queries which include the joining of the clustered tables.

Database Links

Database links the name given to the form in which one database connects to another in order to access and query data in that other database. While the link exist, the database being accessed cannot access the database which created the link.

Snapshots

Snapshots are instances of what the data in a table looked like at a certain point in time. Snapshots can also be of queries taken at a certain point in time, and can be refreshed to show how the data has changed since the previous refresh of that particular snapshot.

Procedures

Stored procedures is a subroutine which outlines a set of steps to be taken to either access or manipulate data in a database. The procedure is usually written in PL/SQL and looks somewhat like a short program or function.

Functions

Functions are very similar to procedures but are different in that they only return a single value or variable, while stored procedures can return values or sets.

Packages

Packages is the compilation of several related procedures and/or functions which when combined form one large set of instructions to be followed during execution.

Schema Objects In Oracle

The majority of the Schema objects created in this database consist of tables and views which correspond to the relations and queries which will be crated using SQL *PLUS.

The Syntax used to create the table for every relation in the database will be similar to the this:

CREATE TABLE "table_name"

("column 1" "data_type_for_column_1",

"column 2" "data_type_for_column_2",

...)

D. Creation of the tables

The customer table

CS342 SQL> desc jmss_customer

 Name Null? Type

 --- -------- ---------------------------------

 FNAME NOT NULL VARCHAR2(15)

 LNAME NOT NULL VARCHAR2(15)

 PHONENO NOT NULL CHAR(10)

CS342 SQL> select * from jmss_customer

FNAME LNAME PHONENO

--------------- --------------- ----------

Jon Doe 8182347656

Jerry Thomson 6618993243

Michael Jordan 5599090234

Sam Fitzgerald 6619082343

Arnold Herring 2138984327

Drake Oliver 6613310523

Henry Ford 6618273456

Susan Smith 6618324444

Garry Hill 3103345544

Marty McFly 8184568677

The Part Table

CS342 SQL> desc jmss_part

 Name Null? Type

 --- -------- --------------------------

 PNAME NOT NULL VARCHAR2(30)

 PNO NOT NULL NUMBER(38)

 PRICE NUMBER(10,2)

 QTY NUMBER(38)

CS342 SQL> select * from jmss_part;

PNAME PNO PRICE QTY

------------------------------ ---------- ---------- ----------

muffler 1001 79.99 21

windshield 1002 199.99 15

radiator 1003 99.99 40

clutch 1004 249.99 26

brakes 1005 65.99 38

steeringwheel 1006 49.99 15

fueltank 1007 149.99 6

headlights 1008 89.99 13

oilfilter 1009 299.99 17

rearfenders 1010 29.99 57

10 rows selected.

The Part_Order Table

CS342 SQL> desc jmss_part_order;

 Name Null? Type

 --- -------- ---------------------------------

 CPHONENO NOT NULL CHAR(10)

 PARTNO NOT NULL NUMBER(38)

 ORDERNO NOT NULL NUMBER(38)

 DATE_MADE NOT NULL DATE

CS342 SQL> select * from jmss_part_order;

CPHONENO PARTNO ORDERNO
DATE_MADE

6618993243 1001
3001

08-FEB-11

6613310523 1005
3002

23-FEB-11

3103345544 1010
3003

10-MAR-11

3103345544 1010
3004

11-MAR-11

8184568677 1009
3005

11-MAR-11

6618324444 1008
3006

29-MAR-11

8184568677 1009
3007

01-APR-11

6618324444 1002
3008

04-APR-11

6613310523 1003
3009

20-MAY-11

6619082343 1004
3010

30-JUN-11

10 rows selected.

The Invoice Table

CS342 SQL> desc jmss_invoice;

 Name Null?

Type

 --- -------- --------------------------------- PHONENUMBER

CHAR(10)

 SALENO NOT NULL

NUMBER(38)

 PART_SOLD NOT NULL

NUMBER(38)

 DATE_ISSUED NOT NULL

DATE

CS342 SQL> select * from jmss_invoice;

PHONENUMBE SALENO PART_SOLD DATE_ISSU

---------- ---------- ---------- ---------

5599090234 2001
1006

02-FEB-11

5599090234 2002
1010

03-FEB-11

2138984327 2003
1001

10-FEB-11

8184568677 2004
1001

20-FEB-11

6618273456 2005
1002

20-APR-11

6619082343 2006
1005

30-APR-11

8184568677 2007
1009

30-APR-11

3103345544 2008
1008

02-MAY-11

6618324444 2009
1010

10-MAY-11

6613310523 2010
1004

30-JUN-11

10 rows selected.

E. Queries in SQL

The following are the queries which were formed in phase two in SQL using SQL *PLUS.

1. List all invoices made between 02/01/11 and 03/01/11

 select * from jmss_invoice

 where date_issued > DATE '2011-02-01' and date_issued < DATE '2011-03-01'

 order by date_issued;

PHONENUMBE SALENO PART_SOLD DATE_ISSU

---------- ---------- ---------- ---------

5599090234 2001 1006 02-FEB-11

5599090234 2002 1010 03-FEB-11

2138984327 2003 1001 10-FEB-11

8184568677 2004 1001 20-FEB-11

2. List names and phone numbers of customers who ordered radiator.

select fname,lname, phoneno from ((jmss_customer join jmss_part_order on phoneno =

cphoneno) join jmss_part on partno = pno)

where pname = 'muffler';

CS342 SQL> @q2.sql

FNAME LNAME PHONENO

--------------- --------------- ----------

Jerry Thomson 6618993243

3. List name(s) of most expensive parts.

select pname, price from jmss_part join (select max(price) as mprice from jmss_part) on price = mprice ;

CS342 SQL> @q3.sql

PNAME PRICE

------------------------------ ----------

oilfilter 299.99

4. List invoices which belong to ‘Michael Jordan’

select fname, saleno, part_sold, date_issued from (jmss_customer join jmss_invoice on

phoneno = phonenumber)

where fname = 'Michael' and lname = 'Jordan';

CS342 SQL> @q4.sql

FNAME SALENO PART_SOLD DATE_ISSU

--------------- ---------- ---------- ---------

Michael 2001 1006 02-FEB-11

Michael 2002 1010 03-FEB-11

5. List parts which there are most of in stock

select pname, qty from jmss_part join (select max(qty) as mqty from jmss_part) on qty = mqty ;

CS342 SQL> @q5.sql

PNAME QTY

------------------------------ ----------

rearfenders 57

Phase IV

 A. Common Features in Oracle PL/SQL and MS Trans-SQL

 A-1. Components, which consist of PL/SQL and Trans-SQL

Oracle PL/SQL and Microsoft Transact SQL are based off a SQL. PL/SQL is one of the more important languages needed for Oracle Databases. The other language is developed and used by Microsoft. Both languages support creating tables, constraints, functions, stored procedures, triggers and packages. Major difference between the two languages is syntax that is used to create and maintain the database.

 A-2. Purposes of Stored subprogram

PL/SQL and Trans-SQL language is used to create stored procedures or subprogram, which help run user tasks faster and so on. These stored subprograms consist of procedures, functions, triggers and other similar objects. For the oracle database used in this project, we make use of PL/SQL for creating the stored procedures. They are able to accept arguments and they can access and manipulate the database. They

can simply run queries or do more complex stuff.

 A-3. Benefits of calling stored subprogram over sending a dynamic SQL to

 front end to DBMS server.

Stored procedures are useful to perform basic SQL commands, and make it less tedious to the programmer to insert, delete, or update any records in the database. Some more positives from using stored procedures is that it will allow the programmer to hide any important tasks from the user, thus making the database more protected from their users. What I mean is that user can only invoke the subprogram, not view or edit it, so any sensitive information is protected.

 B. Oracle PL/SQL

 B-1. PL/SQL program structure, control statements, cursors

Almost all PL/SQL programs have three main sections in their programs Declaration, Execution, and Exception. Declaration is where variables, cursors, and user-defined exceptions are created. Executions has SQL commands, which perform the program's job. Exception is where the entire user defined and system defined exceptions are taken care of.

PL/SQL programs follow similar structure regardless of their purpose:

DECLARE

 variableName variableType := value;

BEGIN

 SQL Commands (SELECT,INSERT,UPDATE,DELETE)

END;

Cursors are used to traverse a table; essentially a cursor is able to store tuples. Cursors are defined using following syntax:

 DECLARE

 CURSOR name (parameters)

 IS select_statement;

PL/SQL procedures support control statements. Control statements manage the logical ﬂow.

Control Statements:

IF condition THEN statement;

ELSEIF condition THEN statement;

END IF;

LOOP

 Statements;

 EXIT WHEN condition

END LOOP;

FOR variable IN lowerbound upperbound LOOP

 statement

END LOOP;

Exception Handling raises the exceptions. Syntax to raise and handle exceptions:

DECLARE

 EXCEPTION;

BEGIN

 IF condition THEN RAISE exception;

 END IF;

EXCEPTION

 WHEN exception_name THEN statement;

END;

A cursor is a specific type used in stored procedures that allows us to name a query like a select statement and have the cursor point to where that sql statement is saved so we can later traverse the rows resulting from that query.

B-2. What is a stored procedure and syntax for creating a stored procedure
When executed, a stored procedure performs a task it was created for. Its structure depends on what task it will be performing. Stored procedures reduces server traffic and are efficient, since SQL server does not have to compile completely.

Syntax for stored procedure, it is same for all:

CREATE [OR REPLACE] PROCEDURE procedure_name

[(variablename IN|OUT variabletype)]

AS

(Declaration)

BEGIN

 SQL-executable statements

END;

Execution of a stored procedure from SQL*PLUS:

SQL> exec procedure_name(arguments);

B-3 What is a stored function and syntax for creating a stored function.

It is created same as stored procedures. Stored functions declare a variable type that they will return, this shows that something will be returned for sure.

Syntax of creating a stored function:

CREATE [OR REPLACE] FUNCTION function_name

[(variablename IN|OUT variabletype)]

RETURN datatype;

AS

(DECLARE variables go here)

BEGIN

 SQL statements;

 RETURN variable;

END;

B-4 What is a package and syntax for creating a package
Packages are a specific collection of stored procedures, functions, and cursors. Packages organize and simplify design requirements for database.

Syntax of creating a package:

CREATE PACKAGE package_name AS

 PROCEDURE names...;

 FUNCTION name...;

END package_name;

CREATE PACKAGE BODY package_name AS

 PROCEDURE name IS…

 BEGIN

 Statements

 END;

 FUNCTION name RETURN DATATYPE IS…

 BEGIN

 Statements

 RETURN variable

 END;

END package_name;

B-5 What is a trigger and syntax for creating a trigger
Triggers give us a way of executing PL/SQL code automatically. At certain instance in database, actions such as update, insert, delete may occur. Without trigger database manager have to manually run commands when a certain action was performed. A trigger would run the commands when the condition was met. Since these tasks are automated after the trigger’s creation, the user does not have to worry about maintaining or checking data before or after the operations.

Syntax of creating a trigger:

CREATE [OR REPLACE] TRIGGER trigger_name

BEFORE|AFTER INSERT|DELETE|UPDATE OF COL [column_name] [OR DELETE| UPDATE|INSERT]

ON table_name

DECLARE

 variables

BEGIN

 FOR EACH ROW

 [WHEN CONDITION]

 Statements;

END;

C - Oracle PL/SQL Subprogram
 C-1 Code and Documentation

Procedure 1

The function of this procedure is to create a new tuple for a new customer and insert it into the customer table. The procedure takes the parameters which are the attributes of the customer table.

 CREATE OR REPLACE PROCEDURE jmss_new_customer(

 Fname IN varchar, Lname IN varchar, PhoneNo IN number)

 AS

 BEGIN

 INSERT INTO JMSS_CUSTOMER VALUES(

 Fname,Lname,PhoneNo);

 EXCEPTION

 WHEN OTHERS THEN

 raise_application_error(-40001,'An error occured in' ||

 SQLCODE || '-ERROR-' || SQLERRM);

 END jmss_new_customer;

 /

Testing the procedure

CS342 SQL> select * from jmss_customer;

FNAME LNAME PHONENO

--------------- --------------- ----------

Jon Doe 8182347656

Jerry Thomson 6618993243

Michael Jordan 5599090234

Sam Fitzgerald 6619082343

Arnold Herring 2138984327

Drake Oliver 6613310523

Henry Ford 6618273456

Susan Smith 6618324444

Garry Hill 3103345544

Marty McFly 8184568677

10 rows selected.

CS342 SQL> start new_customer.sp

Procedure created.

CS342 SQL> exec jmss_new_customer('Jack','Box','6618256789')

PL/SQL procedure successfully completed.

CS342 SQL> select * from JMSS_CUSTOMER;

FNAME LNAME PHONENO

--------------- --------------- ----------

Jack Box 6618256789

Jon Doe 8182347656

Jerry Thomson 6618993243

Michael Jordan 5599090234

Sam Fitzgerald 6619082343

Arnold Herring 2138984327

Drake Oliver 6613310523

Henry Ford 6618273456

Susan Smith 6618324444

Garry Hill 3103345544

Marty McFly 8184568677

11 rows selected.

Procedure 2

The function of this procedure is to delete an existing tuple from the customer table. The procedure takes the customers phone number as a parameter.

 CREATE OR REPLACE PROCEDURE jmss_delete_customer(Phone IN number)

 AS

 BEGIN

 DELETE FROM JMSS_CUSTOMER

 WHERE PhoneNo = Phone;

 EXCEPTION

 WHEN OTHERS THEN

 raise_application_error(-40001,'An error Occured in' || SQLCODE ||

 '-ERROR-' || SQLERRM);

 END jmss_delete_customer;

 /

Testing of the procedure:

CS342 SQL> start delete_customer.sp

Procedure created.

CS342 SQL> exec jmss_delete_customer('6618256789');

PL/SQL procedure successfully completed.

CS342 SQL> select * from jmss_customer;

FNAME LNAME PHONENO

--------------- --------------- ----------

Jon Doe 8182347656

Jerry Thomson 6618993243

Michael Jordan 5599090234

Sam Fitzgerald 6619082343

Arnold Herring 2138984327

Drake Oliver 6613310523

Henry Ford 6618273456

Susan Smith 6618324444

Garry Hill 3103345544

Marty McFly 8184568677

10 rows selected.

Function 1

This function takes a number n of tuples and then takes the prices from the firs n tuples in the part table and then finds the average pric of those prices.

 CREATE OR REPLACE FUNCTION jmss_average_price(p IN NUMBER)

 RETURN NUMBER

 IS

 s NUMBER(6,2) := 0.0;

 t NUMBER(6,2);

 CURSOR c IS SELECT Price FROM JMSS_PART

 ORDER BY Price DESC;

 BEGIN

 OPEN c;

 FOR i IN 1..p LOOP

 fetch c into t;

 s:=s+t;

 END LOOP;

 CLOSE c;

 RETURN s/p;

 EXCEPTION

 when others then

 raise_application_error(-40001, 'An error occured in'

 || SQLCODE || '-ERROR' || SQLERRM);

 END jmss_average_price;

 /

Testing the function:

CS342 SQL> start average_price.sf

Function created.

CS342 SQL> select jmss_average_price(10) from dual;

JMSS_AVERAGE_PRICE(10)

 131.59

Trigger 1

This trigger will cause an order to be stored in a separate table named jmss_part_order_log when that order is deleted or altered from the PART table. Also a new attribute containing the date at which it was deleted will be added to the order log table.

 CREATE OR REPLACE TRIGGER jmss_order_trigger

 AFTER UPDATE OR DELETE ON jmss_part_order

 FOR each ROW

 BEGIN

 INSERT INTO JMSS_PART_ORDER_LOG

 VALUES(:old.cphoneno,:old.partno,:old.orderno,:old.date_made,sysdate);

 END;

 /

Testing of the trigger:

CS342 SQL> @order_trigger.sql

Trigger created.

CS342 SQL> delete from jmss_part_order where orderno = 3005;

1 row deleted.

CS342 SQL> select * from jmss_part_order;

CPHONENO PARTNO ORDERNO DATE_MADE

---------- ---------- ---------- ---------

6618993243 1001 3001 08-FEB-11

3103345544 1010 3003 10-MAR-11

3103345544 1010 3004 11-MAR-11

6618324444 1008 3006 29-MAR-11

8184568677 1009 3007 01-APR-11

6618324444 1002 3008 04-APR-11

6613310523 1003 3009 20-MAY-11

6619082343 1004 3010 30-JUN-11

8 rows selected.

CS342 SQL> select * from jmss_part_order_log;

CPHONENO PARTNO ORDERNO DATE_MADE DATE_FULL

---------- ---------- ---------- --------- ---------

6613310523 1005 3002 23-FEB-11 12-NOV-11

8184568677 1009 3005 11-MAR-11 12-NOV-11

Page 39 of 39

