

CMPS 342 Database Project
Fall 2010
Nick Kott




Phase I: Fact-Finding, Information Gathering, and Conceptual Database Design	3
1.	Fact-Finding Techniques and Information Gathering	3
1.1	Fact-Finding Techniques	3
1.2	Introduction to Enterprise/Organization	4
1.3	Structure of the Enterprise	4
1.4	Itemized Description of Major Objects	5
1.5	Data Views and Operations for User Groups	5
2.	Conceptual Database Design	6
2.1	Entity Set Description	6
2.2	Relationship Set Description	10
2.3	Related Entity Set	12
2.4	E-R Diagram	14
Phase II: Relational Database Model	15
1.	E-R Model and Relational Model	15
1.1	Description	15
1.2	Comparison	15
1.3	Conversion from E-R Model to Relational Model.	16
1.4	Constraints	18
2.	E-R Database to Relational Database Conversion	19
3.	E-R Database to Relational Database Conversion	27
4.	Queries	34
5.	Query Representation	34
Phase III: Implementation of Relational Database	40
1.	SQL*PLUS	40
2.	Oracle Schema Objects	40
3.	Relation Schemas and Instances	42
4.	SQL Queries	55
Phase IV: Implementation of Relational Database	59
1.	Common Features in Oracle PL/SQL and MS Trans-SQL	59
2.	Oracle PL/SQL	59
3.	Oracle PL/SQL Subprogram	64
Phase V: GUI Design and Implementation	67
1.	Daily User Activities	67
Gamblers	67
Bookies	67
2.	Relations, Views, and Subprograms	68
3.	Application Screen Shots	69
4.	Code Description	74
5.	Development Process	77
6.	Conclusion	78


[bookmark: _Toc278744485]














[bookmark: _GoBack]
Phase I: Fact-Finding, Information Gathering, and Conceptual Database Design

1. [bookmark: _Toc278744486]Fact-Finding Techniques and Information Gathering

1.1 [bookmark: _Toc278744487]Fact-Finding Techniques

Fact-finding is a formal process by which information is acquired via various methods in order to better articulate the requirements, and intricacies of a potential database system.  In order for the subsequent steps of database design to be completed properly, it is imperative that the fact-finding step be carried out thoroughly so as to ensure complete understanding by the developer. The following techniques were used in the fact-finding process of this project.
· Interviewing – A number of casinos and a few end users were interviewed to provide understanding of the database system. The structure of the interviews was unstructured at first, allowing the interviewee to provide direction to the interview. Later, questions were formed in order to fill in any apparent gaps left in understanding. It is worth noting that interviewing provided supplemental information that the other techniques could not provide.
· Research – A majority of this project’s end-user understanding was acquired via research as there is a multitude of information available. Casinos both physical, and on-line provided guides to their system, while blogs and other end-user documentation was available and surprisingly detailed on their perspective of the betting system. Research also provided some clarity to answers given in the interview process by giving fundamental information that some interviewees assumed in their responses.
· Questionnaires – A structured series of open-ended questions were used to give structure of the entity types and attributes. Like the research, this provided a broad understanding that was later clarified through the interviewing process.













1.2 [bookmark: _Toc278744488]Introduction to Enterprise/Organization

Gambling has been around just about as long as any form of currency was passing through hands. It is by no stretch of the imagination to assume that sports gambling has been around as long as their respective sports. Football was created around 1900 C.E. and the NFL was founded in 1920. Money line betting is the original, most basic form of sport betting: you bet which team will win. The problem arose that a vast majority would bet for one team (the team expected to win; or favorite) which did not provide the balance that the bookmakers (people who took bets) desired. Thus the invention of the point spread came about. The point spread assigns a handicap to the favorite team so that they must win by a certain amount of points. After observing that more types of betting resulted in more gamblers, another form of betting was created, called totals. For totals betting, gamblers bet on the summated amount of points in a game, without regard to which team wins or loses. Recently, more forms of betting opportunities have arose, such as parlays and teasers.

1.3 [bookmark: _Toc278744489]Structure of the Enterprise

The basic structure of sports betting consists of three main parts: The oddsmaker, sportsbook, and gambler. The oddsmaker controls the given odds on a game. In a money line bet, they provide an opinion on who they think will win the game. However in point spread gambling, they provided the handicap by which the favorite team must win by. These handicaps are formulated through complex and exhaustive algorithms, which are not shared with the public. The sportsbook is any entity that takes bets from gamblers. They get their odds and point spreads from the oddsmakers and offer these to the gamblers. Gamblers place their bets, and receive any winnings from the sportsbook. Typically, a casino acts as both a sportsbook and oddsmaker. The gambler is perhaps the most obvious of the three: the one who places bets. 

It is a fact that the sportsbook has an inherent advantage over gamblers and the bets they place. It is called the 11/10 vigorish, which means for every 11 units that a gambler bets, they have a potential to gain 10 units (a winning 11 unit bet will result in a 21 unit return). This means that a gambler has to win 52.38 percent of their bets just to break even.











1.4 [bookmark: _Toc278744490]Itemized Description of Major Objects

A gambler is the person that drives this enterprise. The gambler will have basic information stored, a username, name, and password as well as contact information such as an address. A gambler has a relationship with a bet in that the gambler places the bet. 

The bet is a simple object with the attribute of amount. However it will have relationships with the game entity and book (or sportsbook) entity. The bet will on a game which is held by a book. However more information may be required to further describe the game to the end user. Attributes such as score, weather, and game type are needed. Any more details about the teams that are required will likely result in a team entity, which will be why we create one now.

A team will play in a game. The play relationship will have the boolean attribute “at home”. The team will have a team name, location, record, and current streak as attributes. Let us now go back and examine the relationship between the bet and the book.

A bet is held by a book. The book provides odds for the game, so they willl have the odds on relationship with the game. The odds on will also describe the spread of the game. The book will have the attribute of bank amount, as potential winnings can never exceed the amount in the book’s bank. The book will also have basic attributes such as name and address.


1.5 [bookmark: _Toc278744491]Data Views and Operations for User Groups

There are two user groups: the gamblers and the bookies. The gamblers will need to be able to log in and place bets with the book on a game. They will also need to be able to view the status of the bet after they have placed it in order to know if they have won, and how much they have won. The bookies will need to be able to set the odds on a game, and manage game data. The bookies will need to be able to view both betting summaries for a game as well as detailed gambler-level betting information.








2. [bookmark: _Toc278744492]Conceptual Database Design

2.1 [bookmark: _Toc278744493]Entity Set Description

User
· This entity describes anybody who uses the system to place or manage bets. The intent of this database it to manage bets, so minimal contact as well as secure login information is stored.
· Candidate keys: userID, userName
· Primary key: userID
· Strong/Weak Entity: Strong
· Fields to be indexed: userID, userName
	Name
	userID
	userName
	fullName
	address
	emailAddress
	password

	Description
	An auto-incremented value.
	A user-chosen identifier
	User’s full Name
	User’s address
	User’s email
	User’s password

	Domain/Type
	32 bit Unsigned Integer
	String
	String
	String
	String
	String

	Value Range
	0 … 2^32
	Any Char array
	Any Char array
	Any Char array
	Any string with ‘@’ and ‘.’
	Any Char array

	Default Value
	None
	None
	None
	None
	None
	None

	Nullable?
	No
	No
	No
	No
	No
	No

	Unique?
	Yes
	Yes
	No
	Yes
	Yes
	No

	Single or Multiple Value
	Single
	Single
	Single
	Single
	Single
	Single

	Simple or Composite
	Simple
	Simple
	Composite
	Composite
	Simple
	Simple













Bet
· This entity describes a bet placed by a gambler on a game with a book. It details amount, time, date, and winning information.
· Candidate keys: betID
· Primary key: betID
· Strong/Weak Entity: Weak
· Fields to be indexed: BetID, Date
	Name
	betID
	amount
	time
	date
	type
	win

	Description
	An auto-incremented value.
	A positive number
	Time of bet
	Date of bet
	Bet type
	Did the bet win?

	Domain/Type
	32 bit Unsigned Integer
	32 bit Unsigned Double
	Time
	Date
	String
	Boolean

	Value Range
	0 … 2^32
	0.00 … 10,000.00
	Current time only
	Current Date only
	Money line, spread, or totals
	0 or 1

	Default Value
	None
	None
	Current time
	Current Date
	None
	null

	Nullable?
	No
	No
	No
	No
	No
	Yes

	Unique?
	Yes
	No
	No
	No
	No
	No

	Single or Multiple Value
	Single
	Multiple
	Multiple
	Multiple
	Multiple
	Multiple

	Simple or Composite
	Simple
	Simple
	Composite
	Composite
	Simple
	Simple




















Game
· This entity describes a match between two teams. 
· Candidate keys: gameID
· Primary key: gameID
· Strong/Weak Entity: Weak
· Fields to be indexed: gameID, Date
	Name
	gameID
	homeScore
	awayScore
	time
	date
	gameType
	weather

	Description
	An auto-incremented value.
	A positive number
	A positive number
	Time of bet
	Date of bet
	What type of game is this?
	Weather forcast for the game

	Domain/Type
	32 bit Unsigned Integer
	32 bit Unsigned Integer
	32 bit Unsigned Integer
	Time
	Date
	String
	String

	Value Range
	0 … 2^32
	0 … 999
	0 … 999
	Current time only
	Current Date only
	Pre-season, regular season, playoff, super-bowl
	Any char array

	Default Value
	None
	null
	null
	Current time
	Current Date
	None
	null

	Nullable?
	No
	Yes
	Yes
	No
	No
	No
	Yes

	Unique?
	Yes
	No
	No
	No
	No
	No
	No

	Single or Multiple Value
	Single
	Multiple
	Multiple
	Multiple
	Multiple
	Multiple
	Multiple

	Simple or Composite
	Simple
	Simple
	Simple
	Composite
	Composite
	Simple
	Composite
















Team
· This entity provides information on the teams that are bet upon. 
· Candidate keys: teamID, teamName
· Primary key: teamID
· Strong/Weak Entity: Strong
· Fields to be indexed: teamID
	Name
	teamID
	teamName
	city
	State
	record
	streak

	Description
	An auto-incremented value.
	The team’s name
	The team’s city
	The team’s state
	The team’s record
	A number of consecutive wins or losses

	Domain/Type
	32 bit Unsigned Integer
	String
	String 
	String 
	String
	32 bit
int

	Value Range
	0 … 2^32
	Any char array
	Any char array
	Any char array
	0-0-0 to 16-16-16
	-16 … 16

	Default Value
	None
	None
	None
	None
	0-0-0
	0

	Nullable?
	No
	No
	No
	No
	No
	No

	Unique?
	Yes
	Yes
	No
	No
	No
	No

	Single or Multiple Value
	Single
	Single
	Multiple
	Multiple
	Multiple
	Multiple

	Simple or Composite
	Simple
	Simple
	Simple
	Simple
	Composite
	Simple




















Book
· This entity describes an entity that accepts bets, sets odds, and pays winnings 
· Candidate keys: bookID, bookName
· Primary key: bookID
· Strong/Weak Entity: Strong
· Fields to be indexed: bookID
	Name
	bookID
	bookName
	address
	bank

	Description
	An auto-incremented value.
	The book’s name (casino or otherwise)
	User’s address
	The book’s available assets

	Domain/Type
	32 bit Unsigned Integer
	String
	String
	32 bit
Unsigned Int

	Value Range
	0 … 2^32
	Any char array
	Any Char array
	0 … 2^32

	Default Value
	None
	None
	None
	None

	Nullable?
	No
	No
	No
	No

	Unique?
	Yes
	Yes
	Yes
	No

	Single or Multiple Value
	Single
	Single
	Single
	Multiple

	Simple or Composite
	Simple
	Simple
	Composite
	Simple



2.2 [bookmark: _Toc278744494]Relationship Set Description

Gambles:
	This ternary relationship is between the gambler, the bet, and the game. Every bet must have one gambler and one game. Whenever a gambler creates a bet on a game, this relationship is created. This links the userID with the betID and the gameID.
· Mapping cardinality: M..M..M
· Descriptive field: teamID
· Participation constraint: mandatory for Bet, optional for gambler and game




Held_By:
	This relationship is between the bet and the book. It describes the entity that manages the bet, and pays winnings to the gambler. The linking attributes are betID and bookID.
· Mapping cardinality: M..1
· Descriptive field: none
· Participation constraint: mandatory for Bet, optional for book
Plays_In:
	This relationship is between the game and a team. It describes the game a team will play in. It also describes if the team is playing at home and if they win. The linking attributes are gameID and teamID.
· Mapping cardinality: 2..M
· Descriptive field: atHome, win
· Participation constraint: mandatory for game, optional for team.
Odds_On:
	This relationship is between the book and the game entity. It describes which team is favorited in a game by the teamID, and by what point spread. This information is used when placing bets. The linking attributes are bookID and gameID.
· Mapping cardinality: M..M
· Descriptive field: favTeamID, pointSpread
· Participation constraint: optional for book and for game
Works_For:
	This relationship is between the bookie and the book entity. It describes which book a bookie works for and can access. This information is used when managing the system. The linking attributes are bookID and userID.
· Mapping cardinality: M..1
· Descriptive field: position
· Participation constraint: optional for book mandatory for bookie




2.3 [bookmark: _Toc278744495]Related Entity Set

Gambler
· This entity is a subclass specialization of the User entity, and serves the purpose of storing a gambler’s payment information. 
· Specialization/Generalization Relationship: disjoint, partial participation
· Aggregation: IS-A-PART-OF Users
	Name
	routingNo
	bankAcctNo

	Description
	Bank routing number
	Bank Account Number

	Domain/Type
	String
	String

	Value Range
	Array of numerical chars
	Array of numerical chars

	Default Value
	None
	None

	Nullable?
	No
	No

	Unique?
	No
	Yes

	Single or Multiple Value
	Multiple
	Single

	Simple or Composite
	Simple
	Simple






















Bookie
· This entity is a subclass specialization of the User entity, and serves the purpose of storing a bookie’s affiliation information. This information will be used to filter betting reports and management access.
· Specialization/Generalization Relationship: disjoint, partial participation
· Aggregation: IS-A-PART-OF Users
	Name
	position

	Description
	Bookie’s official title

	Domain/Type
	String

	Value Range
	Array of chars

	Default Value
	None

	Nullable?
	No

	Unique?
	No

	Single or Multiple Value
	Multiple

	Simple or Composite
	Simple
















2.4 [bookmark: _Toc278744496]E-R DiagramUsers
userID (PK)
userName
fullName
address
emailAddress
password









Bookie
position

	Gambler
routingNo
bankAcctNo



n	 
		nBet
betID(PK)
amount
time
date
type
win
Game
gameID(PK)
homeScore
awayScore
time
date
gameType
weather

	n		n		n		2Works For
Gambles
Plays_In
Team
teamID(PK)
teamName
city
state
record
streak


teamID

		natHome
win



		n
Held_By
Book
bookID(PK)
bookName
address
bank

		n		nOdds_On

		1
	1favTeamID
pointSpread

	
[bookmark: _Toc278744497]Phase II: Relational Database Model

1. [bookmark: _Toc278744498]E-R Model and Relational Model

1.1 [bookmark: _Toc278744499]Description

The Relationship Data Model first caught the attention of the programming industry due to its simplicity and mathematical foundation in a paper written by Ted Codd of IBM in 1970. In the early 1980s, the model was applied for commercial use as the SQL/DS system. Since then the model has been widely used in major systems such as SQL Server and Oracle. This model uses a collection of relations to compose the database. Each relation contains instances (tuples) that are described by the data which they hold. This data is organized into attributes that is further specified by the domain. The result is a logically-simplified theoretical representation of a database which is therefore easier to convert into an actual database.
1.2 [bookmark: _Toc278744500]Comparison

The Entity-Relationship model is a highly conceptual model that makes it ideal for the initial design of a database. This high-level conceptualization is most useful when represented visually through an ER diagram. This is perhaps one of the few mediums through which a database designer and a non-technical person of reference (or users) can clearly communicate their understandings of the database concept. It then follows that this would be an ideal starting model, as any input on the design from non-technical persons from here forward will typically be difficult to integrate.

The Relational model is the next step in transforming the conceptualization into an actual database. Each entity and relationship from the previous model becomes a relation. Each relation contains attributes that describe the relation. For each instance of the relation there is a tuple; each tuple contains values for the attributes which collectively describe the instance. While it may be harder to visualize like the E-R Model, the structure and detail of the Relational model is a more explicit iteration of the database concept. This structure is also closer to the structure of the implemented database.






1.3 [bookmark: _Toc278744501]Conversion from E-R Model to Relational Model.

The conversion from an E-R Model is not as much a necessary process as it is a natural process. To skip this conversion, one could argue that a lot of time could be saved. The same could be said if we also skipped the E-R Model. However, through experience we have learned that this is a very bad idea. We first take the ideas behind a database, and make it a high-level E-R Model. Then we take the high-level E-R Model and convert it to a lower-level Relational Model. Finally, we convert the Relational Model to the actual database. These careful iterations allow us to properly think through the organization and structure of our database so that the final product is flawless in its implementation.

The conversion of strong entity types is relatively simple; each strong entity becomes a relation. This relation contains all the simple attributes of the entity. A composite attribute is broken into its simple components. One primary key is chosen, while making note of any other keys as candidates for indexing.

Weak entity types are similarly handled. Each weak entity becomes a relation with its attributes made up of the simple attributes of the entity. However, the weak entity also includes the primary key of the owner entity type as a foreign key. This, along with the partial key (if any) of the weak entity compose the primary key.

Binary 1:1 relationship types have three approaches that can be used to convert to the relatioal model depending on the situation. In real-world situations these relationship types are not very likely to occur. The three approaches are:
· Foreign key approach: add the primary key of the other relation to the one that has total participation as a foreign key. This avoids having a large number of null values.
· Merged relation approach: merge the two entity types and the relation into one relation that includes the attributes of all its constituents. This is only acceptable when both entities have full participation.
· Cross-reference or relationship relation approach: create a relationship relation that contains both participating entities’ keys as attributes. This is ideal of low participation relationships as it saves us from having a large number of null values in one of the relations.
The foreign key and relationship relation approach are used for binary 1:N relationships as well. The foreign key approach asks us to add the primary key of the 1-side as a foreign key of the N-side. The relationship relation works the same as before, for each relationship instance we have a tuple containing the primary keys of the two entities. Which approach to use depends on the participation of the N-side entity as well as the size of memory each approach uses per tuple. By multiplying the number of records by the memory size, we should be able to determine which approach is appropriate. Binary M:N relationship types must also use the relationship relation due to the cardinality constraints.
Multivalued attributes are handled by creating a new relation for the attribute, and assigning each part of the multi-valued attribute as its own attribute to the relation. The relation can then be referenced by a foreign key attribute by any relation that wishes to use it. For N-ary relationship types, we create a relationship relation that contains all participating relations’ primary keys as attributes along with any simple attributes of the relationship type.
For specialization and generalization, we also have multiple options for conversion. These options are:
· Create a relation for the superclass, and a relation for each subclass. Each subclass would have its attributes union with the superclass. Also, the primary key of the subclass would be the same as the superclass. This option is acceptable for any specialization.
· Create a relation for every subclass that has its own attributes as well as the superclass’ attributes and primary key. This only works when every superclass entity belongs to at least one of the subclasses.
· Create a single relation that contains all the subclass and superclass attributes, the superclass’ primary key, and a type attribute to specify which subclass to which a tuple belongs. This option could have many null values if there are numerous subclass attributes and only works if they are disjoint.
· Create a single relation as per the previous option; however, create Boolean type attributes for each subclass type. This option is appropriate for a specialization where subclasses overlap as well as disjoint. 
When converting a category, you must add a surrogate key if the defining superclasses do not share a common key. The surrogate key becomes the primary key of the category’s relation, and a foreign key to the superclasses. If the superclasses share a primary key, then we merely use this as the primary key of the new relation. Now that we have covered various instances in the conversion process, we need to consider constraints.







1.4 [bookmark: _Toc278744502]Constraints

Constrains are limitations we enforce upon a database to ensure that order persists in our operations and that no unexpected value occurs within the data. Entity constraints maintain that no two tuples are duplicated. This is usually achieved by including a unique primary key to each tuple in a relation; a primary key can be unique but must not be null. Having a unique identifier provides us with a means to select and compare specific tuples within a relation. Similar is the constraint that a reference to a tuple must refer to a tuple and not null. This referential constraint can be taken further as a foreign key. A foreign key must have the same domain as the primary key of which it refers. A foreign key must also exist as a primary key in the reference relation, or be a null value. Check constrains and business rules allow us to customize a database to the specific application. Values must not exist outside the domain of the business. These constraints keep the data relevant and concise.

















2. [bookmark: _Toc278744503]E-R Database to Relational Database Conversion
Users
	Attributes
userID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
userName
Domain: string. Must be between 6 and 12 alpha-numeric characters long. Cannot be NULL.
fullName
Domain: string. Must be between 4 and 50 characters long. Composite attribute in the format of: lastName, firstName. A comma and space separate the constituent attributes. Cannot be NULL.
Address
Domain: string. Must be less than or equal to 75 characters. Composite attribute in the format of: Street 1, Street2, City, State, Zip. Composite is comma delimited. Cannot be NULL.
emailAddress
Domain: string. Must be a valid email address containing one ‘@’ character and at least one ‘.’ character. Cannot be NULL.
Password
Domain: string. Must be between 6 and 12 characters long. Cannot be NULL.
Constraints
Primary key: userID, must be unique and not NULL.
Business Rule: none of the attributes can be null for payment purposes. Every userName, address, and emailAddress must be unique. Every user must be a gambler or bookie.
Candidate Keys
userID, userName



Gambler
	Attributes
userID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
routingNo
Domain: string. Must be 9 numeric characters long. Cannot be NULL.
bankAcctNo
Domain: string. Must be less than 20 numeric characters long. Cannot be NULL.
Constraints
Primary Foreign key: userID, must be unique and not NULL. Must exist in the Users relation.
Business Rule: the bank information must be present in order to charge for bets. The bankAcctNo must be unique for the given routingNo, thus giving a unique bank account.
Candidate Keys
userID












Bookie
	Attributes
userID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
position
Domain: string: Must be less than 20 numeric characters long. Cannot be NULL.
bookID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
Constraints
Foreign key: userID, bookID. Must exist in their respective relations and be NOT NULL.
Business Rule: each employee must have a position and bookID to determine access rights.
Candidate Keys
userID












Bet
	Attributes
betID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
bookID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
userID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
gameID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
teamID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
amount
Domain: unsigned double. Must be between 0.00 and 10,000.00 numeric characters long. Precision of 2. Cannot be NULL.
bDateTime
Domain: date. Composite attribute in the format of: DD-MON-YY HH:MI:SS. Default value of current datetime. Cannot be NULL.
bType
Domain: string. Must be either “money line”, “spread”, or “totals”. Cannot be NULL.
win
Domain: boolean. Must be 0 or 1; false or true. 
Constraints
Primary key: betID, must be unique and not NULL.
Foreign key: bookID, userID, gameID, teamID, must be unique and not NULL. Must contain a value that exists in their respective relations.
Business Rule: none of the attributes can be null but the win attribute which will not be set until the conclusion of the bet. Every bet has an associated gambler, game, and book.
Candidate Keys
userID




















Game
	Attributes
gameID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
hTeam
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
aTeam
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
homeScore
Domain: unsigned integer. Must be between 0 and 999.
awayScore
Domain: unsigned integer. Must be between 0 and 999.
gDateTime
Domain: date. Composite attribute in the format of: DD-MON-YY HH:MI:SS, value of current date. Cannot be NULL.
gameType
Domain: string. Must be either “pre-season”, “regular season”, “playoff”, or “super-bowl”. Cannot be NULL.
weather
Domain: string. Composite value in the format of: temperature/weatherType. Delimited using ‘/’ character. Cannot be NULL.
Constraints
Primary key: gameID, must be unique and not NULL.
Foreign key: hTeam, aTeam must be unique and not NULL. Must contain teamIDs that exist in the Team relation and must not be equal.
Business Rule: the pk, gTime, gDate, and gameType are set upon creation. The other attributes accept null so that they may be entered when available. Every game has two teams associated with it.
Candidate Keys
gameID

Team
	Attributes
teamID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
teamName
Domain: string. Must be less than 25 characters long. Cannot be NULL.
city
Domain: string. Must be less than 25 characters long. Cannot be NULL.
state
Domain: string. Must be less than 25 characters long. Cannot be NULL.
record
Domain: string. Composite attribute in the format of: W-L-T. Hash mark, ‘-‘, delimited. Default value of “0-0-0”. Cannot be NULL.
streak
Domain: signed integer. Must be between -16 and 16. Default value of 0. Cannot be NULL.
Constraints
Primary key: teamID, must be unique and not NULL.
Business Rule: the teamName must be unique. The record will be the team’s record for the season, and streak their current winning/losing streak. 
Candidate Keys
teamID, teamName

Book
	Attributes
bookID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
bookName
Domain: string. Must be less than 50 characters long. Cannot be NULL.
address
Domain: string. Must be less than or equal to 75 characters. Composite attribute in the format of: Street 1, Street2, City, State, Zip. Composite is comma delimited. Cannot be NULL.
bank
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
Constraints
Primary key: bookID, must be unique and not NULL.
Business Rule: the bookName must be unique. The bank must be greater than 0 to take bets. The book must be able to cover the open bets with the amount in its bank. 
Candidate Keys
teamID, bookName









Odds_On
	Attributes
bookID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
gameID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
teamID
Domain: unsigned integer: 0 to 2^32-1. Cannot be NULL.
pointSpread
Domain: signed integer:  -999 to 999. Cannot be NULL.
Constraints
Foreign key: bookID, gameID, and teamID collectively make a unique key. They must all exist in their respective reference relations.
Business Rule: if a bet type is “point spread” this record will be referenced to determine if they have won or not. This information will also be displayed to the users. 
Candidate Keys
bookID, gameID, and teamID









3. [bookmark: _Toc278744504]E-R Database to Relational Database Conversion

Users(userID, userName, fullName, Address, emailAddress, password)
	userID
	userName
	fullName
	Address
	emailAddress
	password

	1
	Nkott0
	Kott, Nicholas
	1920 Hugo St., Bakersfield, CA, 93308
	Nkott0@gmail.com
	Alfred0

	2
	SawCat
	Cat, Sawyer
	1922 Hugo St., Bakersfield, CA, 93308
	SawCat@gmail.com
	1e8gn54

	3
	Mialicious
	Cat, Mia
	2000 Hugo St., Bakersfield, CA, 93308
	Mialicious@gmail.com
	Randumb1

	4
	FrankC
	Caliendo, Frank
	2100 Truxtun Ave., Saint Clair, MI, 48079
	FrankC@yahoo.net
	123456

	5
	DrWang
	Wang, Huaqing
	4200 Camino Media, Bakersfield, CA, 12345
	hwang@cs.csubak.edu
	fluffydog

	6
	JCardenas
	Cardenas, Jorge
	999 Olive Dr., San Deigo, CA, 10000
	JCardenas@kern.co.ca.us
	3l337one

	7
	TRutledge
	Rutledge, Thomas
	777 Luck St., Las Vegas, NV, 77777
	TRutledge@kern.co.ca.us
	8008ies

	8
	SySamat
	Sy, Samat
	123 Fake St., Austin, TX, 56560
	SySamat@kern.co.ca.us
	1ang2dt

	9
	TVanMetre
	Van Metre, Tom
	688 Green Ave., ID, 88809
	TVanMetre@kern.co.ca.us
	45f98fdhg9

	10
	PiersonJiu
	Jiu, Pierson
	45247 Golden Gate Pkwy., San Francisco, CA, 91240
	PiersonJiu@kern.co.ca.us
	Pazz7432

	11
	Mialing
	Cart, Mart
	4000 Hugo St., Bakersfield, CA, 93309
	cart@gmail.com
	Randsfgh

	12
	UglyOrg
	Brown, Orge
	5500 Truxtun Ave., Saint Clair, MI, 48079
	haaaar@yahoo.net
	1j4788g

	13
	OtherPer
	Van, Big
	200 Camino Media, Bakersfield, CA, 12345
	hoolahut@austin.edu
	blueish

			14
	Obamakin
	Obama, Barak
	999 Olive Dr., SomeCity, D.C., 10000
	Theprez@usa.gov
	Freeh3alth

	15
	drooling
	Robers, Trey
	777 Luck St., Las Vegas, FL, 86095
	TREY@treyz.us
	ohmygosh

	16
	toomany
	Que, Por
	123 Fake St., Austin, Az, 55670
	whyis@thishappening.org
	49857v4

	17
	NOOOO
	Black, Jack
	688 Verners Ave., ID, 88809
	blackJ@aol.com
	H000ti3

	18
	tokcin
	Mama, Joe
	45247 Golden Gate Pkwy., Toledo, OH, 46709
	tokcin@ohio.oh
	Joebos87



Gambler(userID, routingNumber, bankAcctNo)
	userID
	routingNumber
	bankAcctNo

	1
	332484215
	704654654

	2
	194650252
	605465

	3
	956831478
	00054480

	4
	021859623
	468405210

	5
	540405465
	000584584

	6
	465406545
	5404654

	7
	332484215
	455404654

	8
	970321454
	980051

	9
	002415547
	04654

	10
	224086752
	06540644



Bookie(userID, position, bookID)
	userID
	position
	bookID

	11
	Sys Admin
	1

	12
	Sys Admin
	2

	13
	Sys Admin
	3

	14
	Sys Admin
	4

	15
	Sys Admin
	5

	16
	Sys Admin
	6

	17
	Sys Admin
	7

	18
	Data Clerk
	7



Bet(betID, bookID, userID, gameID, teamID, amount, time, date, type, win)
	betID
	bookID
	userID
	gameID
	teamID
	amount
	time
	date
	type
	win

	1
	1
	1
	1
	6
	20.00
	13:18
	04/09/2010
	money line
	1

	2
	2
	2
	2
	7
	100.00
	12:24
	05/24/2010
	totals
	0

	3
	3
	3
	3
	3
	1.00
	08:32
	01/30/2010
	spread
	1

	4
	4
	4
	3
	3
	25.00
	06:41
	02/14/2010
	money line
	1

	5
	2
	5
	4
	5
	88.00
	15:01
	03/29/2010
	spread
	0

	6
	3
	6
	5
	7
	2,000.00
	10:08
	09/19/2010
	money line
	0

	7
	1
	7
	6
	1
	200.00
	22:56
	10/14/2010
	totals
	0

	8
	5
	8
	7
	8
	350.00
	00:14
	10/10/2010
	money line
	1

	9
	6
	9
	8
	3
	75.00
	02:21
	10/14/2010
	spread
	1

	10
	7
	10
	9
	4
	20.00
	03:51
	10/14/2010
	totals
	0



Game(gameID, hTeam, aTeam, homeScore, awayScore, time, date, gameType, weather)
	gameID
	hTeam
	aTeam
	homeScore
	awayScore
	time
	date
	gameType
	weather

	1
	1
	6
	10
	32
	10:00
	08/15/2010
	pre-season
	95F/Sunny

	2
	2
	7
	24
	23
	13:00
	08/15/2010
	pre-season
	75F/Indoors

	3
	3
	8
	13
	7
	18:00
	01/30/2010
	super-bowl
	19F/Snow

	4
	5
	10
	3
	21
	13:00
	09/21/2010
	regular season
	95F/Sunny

	5
	3
	7
	32
	10
	10:00
	10/08/2010
	regular season
	85F/Sunny

	6
	1
	2
	23
	24
	13:00
	10/15/2010
	regular season
	55F/Windy

	7
	5
	8
	12
	56
	10:00
	10/15/2010
	regular season
	65F/Rain

	8
	6
	3
	7
	13
	13:00
	10/15/2010
	regular season
	80F/Cloudy

	9
	7
	4
	21
	3
	10:00
	10/15/2010
	regular season
	105F/Sunny






Team(teamID, teamName, city, state, record, streak)
	teamID
	teamName
	city
	state
	record
	streak

	1
	Lions
	Detroit
	MI
	1-4-0
	-1

	2
	Chargers
	San Diego
	CA
	1-4-0
	1

	3
	Bills
	Buffalo
	NY
	0-5-0
	-5

	4
	Texans
	Houston
	TX
	4-1-0
	2

	5
	Dolphins
	Miami
	FL
	3-2-0
	2

	6
	Colts
	Indianapolis
	IN
	4-1-0
	2

	7
	Bengals
	Cincinnati
	OH
	2-2-0
	-1

	8
	Giants
	New York
	NY
	3-2-0
	2

	9
	Patroits
	Foxboro
	MA
	3-2-0
	1

	10
	Packers
	Green Bay
	WI
	2-3-0
	-3



Book(bookID, bookName, address, bank)
	bookID
	bookName
	address
	bank

	1
	Mirage
	3400 Las Vegas Boulevard South, Las Vegas, NV
	24,000,000.00

	2
	Bellagio
	3600 Las Vegas Blvd South, Las Vegas, NV 
	38,000,000.00

	3
	MGM Grand
	3799 S. Las Vegas Blvd., Las Vegas, NV
	300,000,000.00

	4
	Venetian
	Venetian, 3355 Las Vegas Blvd S, Uninc, NV
	220,000,000.00

	5
	Caesars Palace
	3570 Las Vegas Blvd South, Las Vegas, NV
	700,000,000.00

	6
	Wynn
	3131 Las Vegas Blvd. South, Las Vegas, NV
	1,100,000,000.00

	7
	Luxor
	3900 Las Vegas Blvd, S, Las Vegas, NV
	550,000,000.00













Odds_On(bookID, gameID, teamID, pointSpread)
	bookID
	gameID
	teamID
	pointSpread

	1
	1
	6
	1

	2
	1
	1
	3

	3
	1
	1
	3

	4
	1
	1
	3

	5
	1
	1
	3

	6
	1
	1
	7

	7
	1
	1
	4

	1
	2
	7
	7

	2
	2
	7
	7

	3
	2
	7
	7

	4
	2
	7
	6

	5
	2
	7
	7

	6
	2
	7
	7

	7
	2
	7
	7

	1
	3
	3
	2

	2
	3
	3
	0

	3
	3
	3
	2

	4
	3
	3
	3

	5
	3
	3
	3

	6
	3
	3
	4

	7
	3
	3
	2

	1
	4
	10
	1

	2
	4
	10
	1

	3
	4
	10
	2

	4
	4
	10
	4

	5
	4
	10
	2

	6
	4
	10
	1

	7
	4
	5
	1

	1
	5
	3
	3

	2
	5
	3
	3

	3
	5
	3
	3

	4
	5
	3
	3

	5
	5
	3
	4

	6
	5
	3
	2

	7
	5
	3
	7

	1
	6
	1
	0

	2
	6
	1
	0

	3
	6
	2
	0

	4
	6
	2
	0

	5
	6
	1
	0

	6
	6
	2
	0

	7
	6
	1
	1

	1
	7
	8
	10

	2
	7
	8
	10

	3
	7
	8
	10

	4
	7
	8
	10

	5
	7
	8
	9

	6
	7
	8
	10

	7
	7
	8
	10

	1
	8
	6
	3

	2
	8
	6
	3

	3
	8
	6
	3

	4
	8
	6
	3

	5
	8
	6
	3

	6
	8
	6
	3

	7
	8
	6
	3

	1
	9
	7
	2

	2
	9
	7
	4

	3
	9
	7
	2

	4
	9
	7
	3

	5
	9
	7
	3

	6
	9
	7
	7

	7
	9
	7
	3



















4. [bookmark: _Toc278744505]Queries

· Select teams that have won more than 1 game as the away team.
· Select gamblers that have bet on more than one game.
· Select the largest winnings for games on 10/24/2010.
· Select gamblers who have bets with all books.
· Select gamblers who have open bets.
· Select books that have never had a bet.
· Select gamblers that have never had a winning bet
· Select gamblers that have only placed bets over $1,000.00
· Select gamblers that have won more than once.
· Select the game that has the largest bet on it.

5. [bookmark: _Toc278744506]Query Representation

Select teams that have won more than 1 game as the away team.
Relational Algebra:
	OneWin 
	
	Tuple Relational Calculus:
	}
	Domain Relational Calculus:
		{<t,n> | Team(t,n,_,_,_,_) ^ (g1)(g2)(Game(g1,_,t,hs1,>hs1,_,_,_,_) ^ Game(g1,_,t,hs1,>hs1,_,_,_,_) ^ g1 != g2) }





Select the gamblers that have bet on more than one game.
Relational Algebra:
	OneBetBet * Users * Gambler
	((OneBet g1  OneBet g2))
	Tuple Relational Calculus:
	{ u.fullName | Users(u) ^ (b1)(b2)(Bet(b1) ^ Bet(b2) ^ b1.userID = u.userID ^ b2.userID = u.userID ^ b1.betID != b2.betID) }
	Domain Relational Calculus:
		{<u,n> | Users(u,_,n,_,_,_) ^ (b1)(b2)(Bet(b1,_,u,_,_,_,_,_,_) ^ Game(b2,_,u,_,_,_,_,_,_) ^ b1 != b2) }

Select the largest winnings for games on 10/24/2010.
Relational Algebra:
	bg  (Bet b  Game g)
	
	Tuple Relational Calculus:
	{ b.amount | Bet(b) ^ (g)(Game(g) ^ g.gameID = b.gameID ^ g.date = “10/24/2010” ^ b.win = 1^  (b2)(Bet(b2) ^ g.gameID = b2.gameID ^ g.date = “10/24/2010” ^ b2.win = 1 ^ b2.amount > b.amount) }
	Domain Relational Calculus:
		{ a | (g) (b)(Bet(b,_,_,g,_,a,_,_,_,1) ^ Game(g,_,_,_,_,_,”10/24/2010”,_,_) ^  (b2) (g2)( Bet(b2,_,_,g2,_,>a,_,_,_,1) ^ Game(g2,_,_,_,_,_,”10/24/2010”,_,_)) }





Select gamblers who have bets with all books.
Relational Algebra:
	Users * (  (Book b))
	Tuple Relational Calculus:
	{ u | Users(u) ^ (b)(Book(b) ^ ()(Bet(e)  u.userID = e.userID ^ b.bookID = e.bookID)) }
	Domain Relational Calculus:
		{<u,n> | User(u,_,n,_,_,_) ^(b)( Book(b,_,_,_)Bet(_,b,u,_,_,_,_,_,_,_) ) }

Select gamblers who have open bets.
Relational Algebra:

	Tuple Relational Calculus:
	{ u.fullName | Users(u) ^ (b)(bet(b) ^b.userID = u.userID ^ b.win = null)) }
	Domain Relational Calculus:
		{<u,n> | User(u,_,n,_,_,_) ^(b)( Bet(b,_,u,_,_,_,_,_,_,null)) }










Select books that have never had a bet.
Relational Algebra:



Tuple Relational Calculus:
	{ b.bookName | Book(b) ^  (e)(bet(e) ^b.bookID = e.bookID)) }
	Domain Relational Calculus:
		{<b,n> | Book(b,n,_,_,) ^ (e)( Bet(e,b,_,_,_,_,_,_,_,_)) }

Select gamblers that have never had a winning bet.
Relational Algebra:



Tuple Relational Calculus:
	{ u | Users(u) ^ (e)(bet(e) ^ u.userID = e.userID ^  (e2)(bet(e2) ^ u.userID = e2.userID ^ e2.win=1) )}
	Domain Relational Calculus:
		{<u,n> | Users(u,n,_,_,_,_) ^(e)( Bet(e,_,u,_,_,_,_,_,_,_)^ (e2)( Bet(e2,_,u,_,_,_,_,_,_,1)) }





Select gamblers that have only placed bets over $1,000.00
Relational Algebra:



Tuple Relational Calculus:
	{ u | Users(u) ^ (e)(bet(e) ^ u.userID = e.userID  e.amount > 1000)}
	Domain Relational Calculus:
		{<u,n> | Users(u,n,_,_,_,_) ^(e)( Bet(e,_,u,_,_,_ ,_,_,_,_) Bet(e,_,u,_,_,>1000 ,_,_,_,_))}

Select gamblers that have won more than once.
Relational Algebra:



Tuple Relational Calculus:
	{ u | Users(u) ^ (e)(bet(e) ^ u.userID = e.userID ^ (e2)(bet(e2) ^ u.userID = e2.userID ^ e.betId != e2.betID))}
	Domain Relational Calculus:
		{<u,n> | Users(u,n,_,_,_,_) ^(e)( Bet(e,_,u,_,_,_ ,_,_,_,_)^ e != e2)}




Select the game that has the largest bet on it.
Relational Algebra:




Tuple Relational Calculus:
	{ g | Game(g) ^ (e)(bet(e) ^ g.gameID = e.gameID ^  (e2) (g2)(bet(e2) ^ game(g2) ^ g2.gameID = e2.gameID ^ e2.amount > e.amount))}
	Domain Relational Calculus:
		{g | Game(g,_,_,_,_,_,_,_,_) ^(a)( Bet(_,_,_,g,_,a ,_,_,_,_))}












[bookmark: _Toc278744507]Phase III: Implementation of Relational Database

1. [bookmark: _Toc278744508]SQL*PLUS

The Structured Query Language (SQL) is the standard language for interacting with a DBMS. SQL allows for a standard, efficient way of using a database management system regardless of the specific database type. Several variations of the SQL language are T-SQL, MySQL, and SQL*PLUS. While these may have slight variations between them, they are all the same basic SQL language. SQL*PLUS allows users to execute SQL scripts that run queries. This allows users the ability to destroy and recreate a database in a few seconds.

2. [bookmark: _Toc278744509]Oracle Schema Objects

A set of logical data structures or schema objects comprises a schema. Schema object are not physically related in a one-to-one relationship to their physical files. Rather, schema objects are logically stored within a tablespace of the database and the phisical files are contained in one or more of the tablespace’s datafiles. Oracle has a number of Schema Objects, the most widely used being the Table.

· Tables
Tables are the most basic unit of storage in the Oracle database. Tuples and attributes take the form of rows and columns. Columns are assigned unique names, a datatype and a width. The width can be predetermined for some datatypes, but needs to be specified for others. Rules can be set for tables, called constraints, that limit the acceptable values that go into a column for a given row. 

· Views
A view is a customizable presentation of the data contained in a table, or presented in separate views. A view could be considered a virtual table in that it takes the result set of a query and presents it as a table. For the most part, you can operate a view like you would a table, with some restrictions on the update, insert, and delete operations. A view is stored as only its definition (the query) and so takes very little space in the database.

· Dimensions
A dimension declares the hierarchical relationship between columns. It is a container of logical relationships between columns, and does not have any data storage assigned to it. If a dimension is denormalized, the columns will come from the same table. Conversely, if they are from multiple tables the dimension is considered to be fully or partially normalized.

· Sequence Generator
A sequence generator allows for faster throughput in a multiuser environment. The sequence generator avoids the serialization necessary when two users are inserting and waiting for sequential numbers at the same time. Thus the user’s wait time is reduced. Oracle stores the definitions for all of a database’s sequences in the SYSTEM tablespace as a single dictionary table. The sequence numbers are generated independently of tables, and therefore can be reused within a database.

· Synonyms
A synonym is an alias for any other Schema object, even a synonym. They require no more storage than their definition in the data dictionary. There are both public and private synonyms, depending on who has access to it. The can be used to shorten the string used to access a schema object, or to hide its identity or location in a schema.

· Indexes
Indexes are optional structures used to enhance the access time associated with a table. Indexes store associations between columns based on a specific logical indexing scheme. They are best used only on the columns that are frequently used to identify and return rows, and do little good on columns that contain frequently repeated data. While indexes help with information retrieval, they can cause increased latency in insertion.

· Database Links
A database link can be thought of as a pointer to a constant database server. They are a read-only link that allows users to access the information on another server, however they cannot manipulate the data on that server. They are useful for access information without being an actual user of the remote database. 

· Stored Procedures and Functions
Stored procedures in Oracle are PL/SQL procedures and operate much like a cross between a function and a query. Functions accept parameters and return a scalar value. Stored procedures also accept parameters, however they return a result set, much like a table or view. 

· Packages
Packages are a construct of PL/SQL objects (such as procedures, variables, cursors, or functions). A package has two parts: the specification and the body. The specification defines what objects comprise the package, while the body implements the objects in the code. Their purpose is to execute as a single instruction.



3. [bookmark: _Toc278744510]Relation Schemas and Instances

Tables in the project were created in a similar format to the relation example below:

	CREATE TABLE NK_Team
( teamID		number(10)		PRIMARY KEY,
  teamName		varchar2(25)		unique not null,
  city			varchar2(25)		unique not null,
  state			varchar2(25)		unique not null,
  record			varchar2(25)		not null,
  streak			number(10)		DEFAULT 0)
  ENABLE PRIMARY KEY USING INDEX TABLESPACE cs342index;

Relation names are directly related to table names in that: NK_RelationName. The following are the schemas and instances of the relational database implemented:

NK_Users

SQL query executed:
desc NK_Users

 Name                                      Null?    Type
 ----------------------------------------- -------- -------------------------
 USERID                                    NOT NULL NUMBER(10)
 USERNAME                                  NOT NULL VARCHAR2(12)
 FULLNAME                                  NOT NULL VARCHAR2(50)
 ADDRESS                                   NOT NULL VARCHAR2(75)
 EMAILADDRESS                              NOT NULL VARCHAR2(50)
 PASSWORD                                  NOT NULL VARCHAR2(12)



















SQL query executed:
select * from NK_Users

    USERID USERNAME     FULLNAME                                           ADDRESS                                                                     EMAILADDRESS                                       PASSWORD     
---------- ------------ -------------------------------------------------- --------------------------------------------------------------------------- -------------------------------------------------- ------------ 
         2 SawCat       Cat, Sawyer                                        1922 Hugo St., Bakersfield, CA, 93308                                       SawCat@gmail.com                                   1e8gn54      
         3 Mialicious   Cat, Mia                                           2000 Hugo St., Bakersfield, CA, 93308                                       Mialicious@gmail.com                               Randumb1     
         4 FrankC       Caliendo, Frank                                    2100 Truxtun Ave., Saint Clair, MI, 48079                                   FrankC@yahoo.net                                   123456       
         5 DrWang       Wang, Huaqing                                      4200 Camino Media, Bakersfield, CA, 12345                                   hwang@cs.csubak.edu                                fluffydog    
         6 JCardenas    Cardenas, Jorge                                    999 Olive Dr., San Deigo, CA, 10000                                         JCardenas@kern.co.ca.us                            3l337one     
         7 TRutledge    Rutledge, Thomas                                   777 Luck St., Las Vegas, NV, 77777                                          TRutledge@kern.co.ca.us                            8008ies      
         8 SySamat      Sy, Samat                                          123 Fake St., Austin, TX, 56560                                             SySamat@kern.co.ca.us                              1ang2dt      
         9 TVanMetre    Van Metre, Tom                                     688 Green Ave., ID, 88809                                                   TVanMetre@kern.co.ca.us                            45f98fdhg9   
        10 PiersonJiu   Jiu, Pierson                                       45247 Golden Gate Pkwy., San Francisco, CA, 91240                           PiersonJiu@kern.co.ca.us                           Pazz7432     
        11 Mialing      Cart, Mart                                         4000 Hugo St., Bakersfield, CA, 93309                                       cart@gmail.com                                     Randsfgh     
        12 UglyOrg      Brown, Orge                                        5500 Truxtun Ave., Saint Clair, MI, 48079                                   haaaar@yahoo.net                                   1j4788g      
        13 OtherPer     Van, Big                                           200 Camino Media, Bakersfield, CA, 12345                                    hoolahut@austin.edu                                blueish      
        14 Obamakin     Obama, Barak                                       999 Olive Dr., SomeCity, D.C., 10000                                        Theprez@usa.gov                                    Freeh3alth   
        15 drooling     Robers, Trey                                       777 Luck St., Las Vegas, FL, 86095                                          TREY@treyz.us                                      ohmygosh     
        16 toomany      Que, Por                                           123 Fake St., Austin, Az, 55670                                             whyis@thishappening.org                            49857v4      
        17 NOOOO        Black, Jack                                        688 Verners Ave., ID, 88809                                                 blackJ@aol.com                                     H000ti3      
        18 tokcin       Mama, Joe                                          45247 Golden Gate Pkwy., Toledo, OH, 46709                                  tokcin@ohio.oh                                     Joebos87     
         1 Nkott0       Kott, Nicholas                                     1920 Hugo St., Bakersfield, CA, 93308                                       Nkott0@gmail.com                                   Alfred0      

Total number of rows retrieved: 18

Gambler
SQL query executed:
desc NK_Gambler

 Name                                      Null?    Type
 ----------------------------------------- -------- -------------------------
 USERID                                    NOT NULL NUMBER(10)
 ROUTINGNO                                 NOT NULL VARCHAR2(9)
 BANKACCTNO                                NOT NULL VARCHAR2(20)

SQL query executed:
select * from NK_Gambler

    USERID ROUTINGNO BANKACCTNO           
---------- --------- -------------------- 
         1 332484215 704654654            
         2 194650252 605465               
         3 956831478 54480                
         4 21859623  468405210            
         5 540405465 584584               
         6 465406545 5404654              
         7 332484215 455404654            
         8 970321454 980051               
         9 2415547   4654                 
        10 224086752 6540644              

Total number of rows retrieved: 10

Bookie
SQL query executed:
desc NK_Bookie

 Name                                      Null?    Type
 ----------------------------------------- -------- -------------------------
 USERID                                    NOT NULL NUMBER(10)
 POSITION                                  NOT NULL VARCHAR2(20)
 BOOKID                                    NOT NULL NUMBER(10)


SQL query executed:
select * from NK_Bookie

    USERID POSITION                 BOOKID 
---------- -------------------- ---------- 
        11 Sys Admin                     1 
        12 Sys Admin                     2 
        13 Sys Admin                     3 
        14 Sys Admin                     4 
        15 Sys Admin                     5 
        16 Sys Admin                     6 
        17 Sys Admin                     7 

Total number of rows retrieved: 7


Book
SQL query executed:
desc NK_Book

 Name                                      Null?    Type
 ----------------------------------------- -------- -------------------------
 BOOKID                                    NOT NULL NUMBER(10)
 BOOKNAME                                  NOT NULL VARCHAR2(50)
 ADDRESS                                   NOT NULL VARCHAR2(75)
 BANK                                      NOT NULL NUMBER(16,2)

SQL query executed:
select * from NK_Book

    BOOKID BOOKNAME                                           ADDRESS                                                                           BANK 
---------- -------------------------------------------------- --------------------------------------------------------------------------- ---------- 
         1 Mirage                                             3400 Las Vegas Boulevard South, Las Vegas, NV                                 24000000 
         2 Bellagio                                           3600 Las Vegas Blvd South, Las Vegas, NV                                      38000000 
         3 MGM Grand                                          3799 S. Las Vegas Blvd., Las Vegas, NV                                       300000000 
         4 Venetian                                           Venetian, 3355 Las Vegas Blvd S, Uninc, NV                                   220000000 
         5 Caesars Palace                                     3570 Las Vegas Blvd South, Las Vegas, NV                                     700000000 
         6 Wynn                                               3131 Las Vegas Blvd. South, Las Vegas, NV                                   1100000000 
         7 Luxor                                              3900 Las Vegas Blvd, S, Las Vegas, NV                                        550000000 

Total number of rows retrieved: 7


Team
SQL query executed:
desc NK_Team

 Name                                      Null?    Type
 ----------------------------------------- -------- -------------------------
 TEAMID                                    NOT NULL NUMBER(10)
 TEAMNAME                                  NOT NULL VARCHAR2(25)
 CITY                                      NOT NULL VARCHAR2(25)
 STATE                                     NOT NULL VARCHAR2(25)
 RECORD                                    NOT NULL VARCHAR2(25)
 STREAK                                             NUMBER(10)


SQL query executed:
select * from nk_team

    TEAMID TEAMNAME                  CITY                      STATE                     RECORD                        STREAK 
---------- ------------------------- ------------------------- ------------------------- ------------------------- ---------- 
         1 Lions                     Detroit                   MI                        1-4-0                             -1 
         2 Chargers                  San Diego                 CA                        1-4-0                              1 
         3 Bills                     Buffalo                   NY                        0-5-0                             -5 
         4 Texans                    Houston                   TX                        4-1-0                              2 
         5 Dolphins                  Miami                     FL                        3-2-0                              2 
         6 Colts                     Indianapolis              IN                        4-1-0                              2 
         7 Bengals                   Cincinnati                OH                        2-2-0                             -1 
         9 Patroits                  Foxboro                   MA                        3-2-0                              1 
        10 Packers                   Green Bay                 WI                        2-3-0                             -3 
         8 Giants                    New York                  NY                        3-2-0                              2 

Total number of rows retrieved: 10






Game
SQL query executed:
desc NK_Game

 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 GAMEID                                    NOT NULL NUMBER(10)
 HTEAM                                     NOT NULL NUMBER(10)
 ATEAM                                     NOT NULL NUMBER(10)
 HOMESCORE                                 NOT NULL NUMBER(3)
 AWAYSCORE                                 NOT NULL NUMBER(3)
 GDATETIME                                          DATE
 GAMETYPE                                  NOT NULL VARCHAR2(15)
 WEATHER                                   NOT NULL VARCHAR2(50)


SQL query executed:
select * from NK_Game

    GAMEID      HTEAM      ATEAM  HOMESCORE  AWAYSCORE       GDATETIME GAMETYPE        WEATHER                                            
---------- ---------- ---------- ---------- ---------- --------------- --------------- -------------------------------------------------- 
         1          1          6         10         32       15-AUG-10 pre-season      95F/Sunny                                          
         2          2          7         24         23       15-AUG-10 pre-season      75F/Indoors                                        
         4          5         10          3         21       21-SEP-10 regular season  95F/Sunny                                          
         5          3          7         32         10       08-OCT-10 regular season  85F/Sunny                                          
         6          1          2         23         24       15-OCT-10 regular season  55F/Windy                                          
         8          6          3          7         13       15-OCT-10 regular season  80F/Cloudy                                         
         9          7          4         21          3       15-OCT-10 regular season  105F/Sunny                                         
         3          3          1         13          7       30-JAN-10 super-bowl      19F/Snow                                           
         7          5          8         12         56       15-OCT-10 regular season  65F/Rain                                           

Total number of rows retrieved: 9





Bet
SQL query executed:
desc NK_Bet

 Name                                      Null?    Type
 ----------------------------------------- -------- -------------------------
 BETID                                     NOT NULL NUMBER(10)
 BOOKID                                    NOT NULL NUMBER(10)
 USERID                                    NOT NULL NUMBER(10)
 GAMEID                                    NOT NULL NUMBER(10)
 TEAMID                                    NOT NULL NUMBER(10)
 AMOUNT                                    NOT NULL NUMBER(9,2)
 BDATETIME                                          DATE
 BTYPE                                     NOT NULL VARCHAR2(11)
 WIN                                                NUMBER(1)

SQL query executed:
select * from nk_bet

     BETID     BOOKID     USERID     GAMEID     TEAMID     AMOUNT       BDATETIME BTYPE              WIN 
---------- ---------- ---------- ---------- ---------- ---------- --------------- ----------- ---------- 
         1          1          1          1          6         20       04-APR-10 money line           1 
         2          2          2          2          7        100       24-MAY-10 totals               0 
         3          3          3          3          3          1       30-JAN-10 spread               1 
         4          4          4          3          3         25       14-FEB-10 money line           1 
         5          2          5          4          5         88       29-MAR-10 spread               0 
         6          3          6          5          7       2000       19-SEP-10 money line           0 
         7          1          7          6          1        200       14-OCT-10 totals               0 
         8          5          8          7          8        350       10-OCT-10 money line           1 
         9          6          9          8          3         75       14-OCT-10 spread               1 
        10          7         10          9          4         20       14-OCT-10 totals               0 

Total number of rows retrieved: 10

Odds_On
SQL query executed:
desc nk_odds_on

 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 BOOKID                                    NOT NULL NUMBER(10)
 GAMEID                                    NOT NULL NUMBER(10)
 TEAMID                                    NOT NULL NUMBER(10)
 POINTSPREAD                               NOT NULL NUMBER(3)



SQL query executed:
select * from nk_odds_on

    BOOKID     GAMEID     TEAMID POINTSPREAD 
---------- ---------- ---------- ----------- 
         1          1          6           1 
         2          1          1           3 
         3          1          1           3 
         4          1          1           3 
         5          1          1           3 
         6          1          1           7 
         7          1          1           4 
         1          2          7           7 
         2          2          7           7 
         3          2          7           7 
         4          2          7           7 
         5          2          7           7 
         6          2          7           7 
         7          2          7           7 
         1          3          3           2 
         2          3          3           0 
         3          3          3           2 
         4          3          3           3 
         5          3          3           3 
         6          3          3           4 
         7          3          3           2 
         1          4         10           1 
         2          4         10           1 
         3          4         10           2 
         4          4         10           4 
         5          4         10           2 
         6          4         10           1 
         7          4          5           3 
         1          5          3           3 
         2          5          3           3 
         3          5          3           3 
         4          5          3           3 
         5          5          3           4 
         6          5          3           2 
         7          5          3           7 
         1          6          1           0 
         2          6          1           0 
         3          6          2           0 
         4          6          2           0 
         5          6          1           0 
         6          6          2           0 
         7          6          1           1 
         1          7          8          10 
         2          7          8          10 
         3          7          8          10 
         4          7          8          10 
         5          7          8           9 
         6          7          8          10 
         7          7          8          10 
         1          8          6           3 
         2          8          6           3 
         3          8          6           3 
         4          8          6           3 
         5          8          6           3 
         6          8          6           3 
         7          8          6           3 
         1          9          7           2 
         2          9          7           4 
         3          9          7           2 
         4          9          7           3 
         5          9          7           3 
         6          9          7           7 
         7          9          7           3 

Total number of rows retrieved: 63
4. [bookmark: _Toc278744511]SQL Queries

Select teams that have won more than 1 game as the away team.

SQL query executed:
select 	*
from 		nk_game g, nk_team t
where		g.ateam = t.teamid and g.awayscore > g.homescore and 
			exists( select 	*
				  from	nk_game g2, nk_team t2
				  where	g2.ateam = t2.teamid and g2.awayscore > g2.homescore and g2.gameid <> g.gameid and t.teamid = t2.teamid
				 )

Total number of rows retrieved: 0

0 row(s) affected.


	


	Select the gamblers that have bet on more than one game.

SQL query executed:
select 	u.userid,u.fullname, count(*)
from 		nk_users u inner join nk_gambler g on u.userid = g.userid 
			inner join nk_bet b on u.userid = b.userid
group by	u.userid,u.fullname
having	count(*) > 1

    USERID FULLNAME                                             COUNT(*) 
---------- -------------------------------------------------- ---------- 
         1 Kott, Nicholas                                              2 

Total number of rows retrieved: 1








Select the largest winnings for games on 10/15/2010.

SQL query executed:
select 	max(b.amount)
from 		nk_users u inner join nk_gambler g on u.userid = g.userid 
			inner join nk_bet b on u.userid = b.userid
			inner join nk_game game on b.gameid = game.gameid
where		to_char(game.gdatetime, 'DD-Mon-YY') = '15-Oct-10' and b.win = 1
group by	to_char(game.gdatetime, 'DD-Mon-YY')

MAX(B.AMOUNT) 
------------- 
          350 

Total number of rows retrieved: 1

Select gamblers who have open bets.

SQL query executed:
select 	u.*
from 		nk_users u inner join nk_gambler g on u.userid = g.userid
where		exists ( select * from nk_bet b where b.userid = u.userid and b.win is null )


Total number of rows retrieved: 0

0 row(s) affected.

Select books that have never had a bet.

SQL query executed:
select 	b.bookname
from 		nk_book b
where		not exists ( select * from nk_bet bet where bet.bookid = b.bookid )

BOOKNAME                                           
-------------------------------------------------- 
Crooks                                             

Total number of rows retrieved: 1



Select gamblers that have never had a winning bet.

SQL query executed:
select 	u.userid,u.fullname
from 		nk_users u inner join nk_gambler g on u.userid = g.userid
where		not exists ( select * from nk_bet bet where bet.userid = u.userid and bet.win = 1 )

    USERID FULLNAME                                           
---------- -------------------------------------------------- 
         5 Wang, Huaqing                                      
         6 Cardenas, Jorge                                    
        10 Jiu, Pierson                                       
         2 Cat, Sawyer                                        
         7 Rutledge, Thomas                                   

Total number of rows retrieved: 5

Select gamblers that have only placed bets over $1,000.00.

SQL query executed:
select 	u.userid,u.fullname
from 		nk_users u inner join nk_gambler g on u.userid = g.userid
where		not exists ( select * from nk_bet bet where bet.userid = u.userid and bet.amount <= 1000 )

    USERID FULLNAME                                           
---------- -------------------------------------------------- 
         6 Cardenas, Jorge                                    

Total number of rows retrieved: 1

Select gamblers who have won more than once.

SQL query executed:
select 	u.userid,u.fullname, count(*)
from 		nk_users u inner join nk_gambler g on u.userid = g.userid
			inner join nk_bet b on u.userid = b.userid
where		b.win = 1
group by 	u.userid,u.fullname
having	count(*) > 1

    USERID FULLNAME                                             COUNT(*) 
---------- -------------------------------------------------- ---------- 
         1 Kott, Nicholas                                              2 

Total number of rows retrieved: 1

Select the game that has the largest bet on it.

SQL query executed:
select  	g.gameid,g.gametype
from 		nk_game g inner join nk_bet b on g.gameid = b.gameid
where		b.amount = ( select max(b2.amount) from nk_bet b2 )

    GAMEID GAMETYPE        
---------- --------------- 
         5 regular season  

Total number of rows retrieved: 1


















[bookmark: _Toc278744512]Phase IV: Implementation of Relational Database

1. [bookmark: _Toc278744513]Common Features in Oracle PL/SQL and MS Trans-SQL

PL/SQL and T-SQL are very similar in operability, however have a few key differences that are mostly syntactical. Both SQL languages call their database objects the same: tables, views, procedures, functions, triggers. The operations you can execute are the same for both, and the differences are actually quite small. 
One of the more important differences is that the T-SQL’s RAISEERROR command does not break the flow of the procedure. It merely returns an error string or message but still returns normally. The PL/SQL’s raise_application_error throws an exception, exits the stored procedure, and rolls back to an implicit savepoint at the beginning of the stored procedure. The stored procedure, in general, remains the same in both languages because the user requirements of the stored procedure are vastly similar.
The purpose of a stored subprogram is to execute a query efficiently and without having to construct the entire query for each execution. A stored subprogram accepts parameters, which it then uses to perform an operation such as inserting, updating, and deleting. Also, it is similar to object oriented programming in that it can allow users functionality without giving them the code implemented in the function. One of the advantages of this over dynamic SQL are that it allows the SQL query to be built on the back end, as opposed to burdening the front end with tedious string allocations. Also, it makes the database more secure from SQL injections. However, with good programming those can be avoided in dynamic SQL as well.

2. [bookmark: _Toc278744514]Oracle PL/SQL

The basic PL/SQL program structure breaks down into three distinct parts: 
· Declaration (keyword: “IS”) – this section is used to declare any local variables, cursors, or user-defined exceptions.
· Execution (keywords: “BEGIN” and “END”) – this section contains the code that operates on/using the data in the declaration section.
· Exception (keyword “EXCEPTION”) – this section contains error handling procedures.




Format:
<TYPE> <Name> IS

BEGIN -- executable part starts here

  [EXCEPTION]

END;


Control Statements:

The control statements give instructions as to which code should be executed at runtime. They can be like the ‘if’ statement and for statement in traditional languages such as C++ and Java. 
IF 	--true/false condition
THEN 	-- statement
ELSEIF -- true/false condition
THEN 	-- statement
ENDIF;

[<<label_name>>]
[bookmark: 7840]CASE selector
[bookmark: 7729]   WHEN expression1 THEN sequence_of_statements1;
[bookmark: 7730]   WHEN expression2 THEN sequence_of_statements2;
[bookmark: 7731]   ...
[bookmark: 7732]   WHEN expressionN THEN sequence_of_statementsN;
[bookmark: 7733]  [ELSE sequence_of_statementsN+1;]
[bookmark: 7734]END CASE [label_name];

LOOP
	EXIT WHEN -- can be used similar to a “break” command
END LOOP;

WHILE condition LOOP
[bookmark: 5140]   sequence_of_statements
[bookmark: 3841]END LOOP;

FOR counter IN [REVERSE] lower_bound..higher_bound LOOP
[bookmark: 5149]   sequence_of_statements
[bookmark: 3856]END LOOP;

	Cursors:

Cursors could be described as pointers that are assigned to rows from a select statement. They look like the following:

CURSOR cursor_name (parameter_list)
IS
SELECT_statement;
	


Stored Procedure:

Stored procedures execute a set of commands using optional variables in a create/insert/select/update/delete statement. The format of a stored procedure is:

CREATE [OR REPLACE] PROCEDURE <NAME>

[parametername] [datatype]

IS

  -- Declare constants and variables in this section.
  -- Example: <Variable Identifier> <DATATYPE>
  --          <Variable Identifier> CONSTANT <DATATYPE>
  --          varEname  VARCHAR2(40);
  --          varComm   REAL;
  --          varSalary CONSTANT NUMBER:=1000;
  --          comm_missing EXCEPTION;

BEGIN -- executable part starts here

  -- Write PL/SQL and SQL statements to implement the processing logic
  -- of subprogram. Example:
  --     SELECT ENAME,
  --            COMM
  --     INTO   varEname,
  --            varComm
  --     FROM   EMP
  --     WHERE  EMPNO = 7369;
  --
  --     IF varComm IS NULL THEN
  --         RAISE comm_missing;
  --     END IF;

  [EXCEPTION] -- exception-handling part starts here
  -- WHEN comm_missing THEN
  --   dbms_output.put_line('Commision is NULL');

END;


Stored Function:

A stored function operates much like a stored procedure would, however it always returns a declared variable upon completion. The stored function format:

CREATE [OR REPLACE] FUNCTION <NAME> (
  [parametername] IN [datatype]) RETURN [datatype] IS

  -- Declare constants and variables in this section.
  -- Example: <Variable Identifier> <DATATYPE>
  --          <Variable Identifier> CONSTANT <DATATYPE>
  --          varEname  VARCHAR2(40);
  --          varComm   REAL;
  --          varSalary CONSTANT NUMBER:=1000;
  --          comm_missing EXCEPTION;

BEGIN -- executable part starts here

  -- Write PL/SQL and SQL statements to implement the processing logic
  -- of subprogram. Example:
  --     SELECT ENAME,
  --            COMM
  --     INTO   varEname,
  --            varComm
  --     FROM   EMP
  --     WHERE  EMPNO = 7369;
  --
  --     IF varComm IS NULL THEN
  --         RAISE comm_missing;
  --     END IF;

  RETURN <returnvalue>;

  -- EXCEPTION -- exception-handling part starts here
  -- WHEN comm_missing THEN
  --   dbms_output.put_line('Commision is NULL');

END;

Packages:

Packages can execute a number of procedures and functions together. Prototypes of each function and/or procedure are required.

CREATE [OR REPLACE] PACKAGE package_name
[bookmark: 5444]   [AUTHID {CURRENT_USER | DEFINER}]
[bookmark: 7066]   {IS | AS}
[bookmark: 6949]   [PRAGMA SERIALLY_REUSABLE;]
[bookmark: 6950]   [collection_type_definition ...]
[bookmark: 6961]   [record_type_definition ...]
[bookmark: 6965]   [subtype_definition ...]
[bookmark: 6981]   [collection_declaration ...]
[bookmark: 6991]   [constant_declaration ...]
[bookmark: 6985]   [exception_declaration ...]
[bookmark: 6995]   [object_declaration ...]
[bookmark: 6999]   [record_declaration ...]
[bookmark: 7003]   [variable_declaration ...]
[bookmark: 6970]   [cursor_spec ...]
[bookmark: 5448]   [function_spec ...]
[bookmark: 7068]   [procedure_spec ...]
[bookmark: 7057]   [call_spec ...]
[bookmark: 7058]   [PRAGMA RESTRICT_REFERENCES(assertions) ...]
[bookmark: 5449]END [package_name];

[CREATE [OR REPLACE] PACKAGE BODY package_name {IS | AS}
[bookmark: 6898]   [PRAGMA SERIALLY_REUSABLE;]
[bookmark: 7009]   [collection_type_definition ...]
[bookmark: 7010]   [record_type_definition ...]
[bookmark: 7011]   [subtype_definition ...]
[bookmark: 7012]   [collection_declaration ...]
[bookmark: 7013]   [constant_declaration ...]
[bookmark: 7014]   [exception_declaration ...]
[bookmark: 7015]   [object_declaration ...]
[bookmark: 7016]   [record_declaration ...]
[bookmark: 7017]   [variable_declaration ...]
[bookmark: 7018]   [cursor_body ...]
[bookmark: 7072]   [function_spec ...]
[bookmark: 7073]   [procedure_spec ...]
[bookmark: 7061]   [call_spec ...]
[bookmark: 5456][BEGIN
[bookmark: 6958]   sequence_of_statements]
[bookmark: 6959]END [package_name];]


Triggers:

Triggers are useful operations that execute upon a specified database event. This means we can have a trigger that changes values in related tables when a value in the event table is manipulated.

CREATE [OR REPLACE] TRIGGER <Name>
  <BEFORE,AFTER> <INSERT,[OR]UPDATE,[OR]DELETE> ON <tablename>
  FOR EACH ROW
[WHEN] [condition]
DECLARE
    [variable(s)]
BEGIN
    <code>
END;


	
























3. [bookmark: _Toc278744515]Oracle PL/SQL Subprogram

Stored Procedures

NK_INSERTGAMBLER
This stored procedure takes accepts all the necessary information required to create a gambler record in this database. Of note, a userID is not required because I created a sequence to handle that. Also, notice that a record is inserted into the NK_USERS table first so as to avoid conflict with the NK_GAMBLER table’s foreign key constraint.
CREATE PROCEDURE "NK_INSERTGAMBLER" (
  "UNAME" IN VARCHAR2, 
  "FNAME" IN VARCHAR2, 
  "ADDY" IN VARCHAR2, 
  "EADD" IN VARCHAR2, 
  "PWORD" IN VARCHAR2, 
  "ROUTNO" IN VARCHAR2, 
  "BACCTNO" IN VARCHAR2) IS

	nuserid number;

BEGIN 

	select nk_seqUsers.nextval into nuserid from dual;

	INSERT INTO NK_USERS(userid,username,fullname,address,emailaddress,password)
	VALUES(nuserid,UNAME,FNAME,ADDY,EADD,PWORD);

	INSERT INTO NK_GAMBLER(userid,routingno,bankacctno)
	VALUES(nuserid,routno,bacctno);

	commit;

END;
	















NK_DELETEGAMBLER
This stored procedure accepts a userId as a parameter and removes the corresponding records from its table. Note, again, that the record is first removed from the NK_GAMBLER table to remain in compliance with the foreign key constraint. Also note that the user’s bets are not removed from the system, so that they can remain for historical reporting. 
CREATE PROCEDURE "NK_DELETEGAMBLER" (
  "DUSERID" IN NUMBER) IS

BEGIN -- executable part starts here

  DELETE FROM nk_gambler
  WHERE userID = DUSERID;

  DELETE FROM nk_users
  WHERE userID = DUSERID;

  commit;

END;

Stored Function

NK_AVGGAMBLERBET
This function accepts a userID as a parameter and returns a scalar value of the average bet made by the user. This task was implemented using an aggregate function so as to reduce the number of local variables declared in the function and keep the code as simple and efficient as possible.

CREATE FUNCTION "NK_AVGGAMBLERBET" (
  "GUSERID" IN NUMBER) RETURN NUMBER IS

  avgamount number(9,2);

BEGIN -- executable part starts here

  SELECT AVG(amount)
  INTO avgamount
  FROM NK_BET
  WHERE userID = GUSERID;

  RETURN avgamount;

END;



Trigger

NK_USERS_UPDELTRIGGER

This trigger executes whenever there is an update or delete on a record in the NK_USERS table. After this event, the trigger enters the old and new values of the userID and userName into NK_LOGTABLE where the UPDATED field is defaulted to SYSDATE.

CREATE TRIGGER "NK_USERS_UPDELTRIGGER"
  AFTER
  UPDATE OF "USERID", "USERNAME" OR DELETE
  ON "NK_USERS"
  FOR EACH ROW
DECLARE

BEGIN 

  INSERT INTO NK_LOGTABLE(OLDVAL,NEWVAL)
  VALUES(:old.USERID + ',' + :old.USERNAME, :new.USERID + ',' + :new.USERNAME);

END;

































[bookmark: _Toc278744516]Phase V: GUI Design and Implementation

1. [bookmark: _Toc278744517]Daily User Activities

There are two basic user groups who will utilize the proposed database. These two groups fall into the generalized relation NK_USERS, and are further described as gamblers and bookies. The gamblers will use the database from a client perspective, while the bookies will maintain a role that is more akin to an administrator.
[bookmark: _Toc278744518]Gamblers
The gambler’s most important activity is being able to place a bet. Without this activity there can be no effective business. They will need a secure way of placing a bet in order to prevent fraudulent bets from being inserted into the database. They also need to be able to view their current and past bets so that they can manage their betting. Also, while placing a bet, they need the ability to choose from a list games and of various casinos that are offering to accept bets on a specific game.
[bookmark: _Toc278744519]Bookies
The bookies, like the gamblers, need a secure way of logging in. This is paramount because each casino will have to have one or more people with access to manage their information in the database without allowing them to access other casino’s information and vice versa. The bookies will need to be able to see the number of bets they are currently holding, and the potential loss of capitol if all of those bets were to go to their respective gamblers. They also need a list of gamblers who are due payments and monthly expenditure and revenue totals. Bookies also need the ability to set the favorite and odds on any pending games.








2. [bookmark: _Toc278744520]Relations, Views, and Subprograms

Most of the relations will be involved in the daily activities of the database, which is typical of a database that does not keep historical records of every relation. NK_BOOK, NK_GAMBLER, and NK_TEAM have a small likelihood of being accessed and operated on in daily use. NK_BOOKIE, unlike NK_GAMBLER, will be access as it will have an impact on the bookie user group’s privileges. The following are the relations involved in daily activities:
· NK_BET
· NK_BOOKIE
· NK_GAME
· NK_ODDS_ON
· NK_USERS

Views provide a useful resource for storing a frequently used query in the database. Databases that are heavily normalized, such as this one, can benefit from these as they can de-normalize the database’s information into a comprehensive state. All of the views created in this database de-normalize data from several relations to create specific interpretations of the information. Some also modify field values, or make use of aggregate functions to calculate new fields. The following is the list of views used in the database implementation:
· NK_VW_AVAILABLEGAMES
· NK_VW_CURRENTBETS
· NK_VW_HOTGAMES
· NK_VW_OLDBETS
· NK_VW_POINTSPREAD

Subprograms enabled the implementation to avoid using dynamic SQL, which is inherently vulnerable to SQL injections. Also, in the case of NK_INSERTGAMBLER and NK_INSERTBOOKIE, these procedures execute two SQL statements. By only passing the procedure a set of parameters, we avoid unnecessary traffic between the web server and database. For this project is made sense to use procedure to carry out insertion, updating, and deletion. The list of procedures are as follows:
· NK_DELETEBOOKIE
· NK_DELETEGAMBLER
· NK_INSERTBET
· NK_INSERTBOOKIE
· NK_INSERTGAMBLER

3. [bookmark: _Toc278744521]Application Screen Shots

For this project, along with any other commercial website, a very important part of development is the graphic design. Unfortunately, my talents in this field are questionable at best. Therefore, the decision was made to take a css design from the website themebot.com. The css template was implemented, along with a few changes as follows:

Login
[image: C:\Users\Nick\Documents\CalState_CS_Files\cs342\login.jpg]
The login page is what any user is directed to if they have not already logged in. It is meant to be simple, clean, and concise. The username and password are checked against existing records in the NK_USERS relation. If they are not found they receive notification:
[image: C:\Users\Nick\Documents\CalState_CS_Files\cs342\failedlogin.jpg]
As you can see, the error message is surrounded by a red dashed line in order to grab the user’s attention. The message suggests that if they have not signed up, they may do so by clicking the link to the right (the link is also present in the navigation not pictured).













Sign Up
[image: C:\Users\Nick\Documents\CalState_CS_Files\cs342\signup.jpg]
The signup page requires all the information necessary to insert a gambler record into the database. Sign up for a bookie requires offline contact due to security concerns. Invalid entries prompt the specific error to be shown in the list below the submit button. If the data passes the validation, then the record is inserted and the user is redirected to the login page.
Menu
[image: C:\Users\Nick\Documents\CalState_CS_Files\cs342\menu.jpg]
This menu is displayed once a user has logged into the website. In the top right corner, the username (“Mialicious”) is displayed along with a sign out link. In the bottom left corner, links to “home”, “history”, and “place bet” are listed for the user to navigate.
Index
[image: C:\Users\Nick\Documents\CalState_CS_Files\cs342\index.jpg]
The index, or “Home”, page quickly displays useful information to the gambler. In section 1, we have a description of the website, along with two areas for admin to post messages or commentary to the user. While this area is not included in the database as a relation, it would prove to be a valuable addition. In section 2, the view NK_VW_CURRENTBETS is displayed using a Gridview object. Formatting is done to the bet and game time columns for readability. In section 3, another view (NK_VW_HOTGAMES) is displayed with another Gridview object. Formatting is done on the date and average bet columns for readability. 


History
[image: C:\Users\Nick\Documents\CalState_CS_Files\cs342\history.jpg]
The history link brings the gambler to a Gridview of their bets which have been resolved. The view is NK_VW_OLDBETS, and formatting has been done on the bet and game time columns.
Place Bet
[image: C:\Users\Nick\Documents\CalState_CS_Files\cs342\availgames.jpg]
The place bet link takes the gambler to this page. Using a gridview, the view NK_VW_AVAILABLEGAMES is displayed along with a template item in the “Place Bet” column. Home and Away are also template items, which display the team name with their record in parenthesis. A tooltip attribute is also placed on these columns displaying the team’s current streak. If they user clicks the link, it redirects them to the following page with the gameID in the query string.
[image: C:\Users\Nick\Documents\CalState_CS_Files\cs342\bet.jpg]
On the left side of the screen is the NK_VW_POINTSPREAD view displayed through another Gridview. On the top left, we have the game information from the NK_VW_AVAILABLEGAMES view displayed in a Formview object. The user make their choices in the dropdown boxes, and text box before hitting submit in order to place a bet. 

4. [bookmark: _Toc278744522]Code Description

The GUI design and implementation for this project was done using Microsoft Visual Studio 2010, and it is an ASP.NET 4.0 website. I used this development environment and language because it is what I use at my current place of employment, and they requested I do so in order to learn more about these tools.  The code can be broken into three sections:
· Database objects
· HTML/XML
· ASP.NET




Database Objects
When implementing the design of the website, it became apparent that modularizing the interaction with the database would greatly improve the code. Therefore, I created two namespaces: DBObj and DBObjManager. DBObj classes are meant to make the processing of form information easier. Instead of passing all of the variables to the database procedure in the C# code of page, we create an object with the information. The object is then operated on with the corresponding DBObjManager class. This prevents changes from the database causing havoc on the C# code, and vice versa.

· DBUser
This class is a representation of the database NK_USERS relation. It has all the relation’s attributes as member variables, and get() and set() methods to access those variables. This class is in the DBObj namespace.
· Gambler
This class is a representation of the databse NK_GAMBLER relation. Like DBUser, it shares it’s corresponding relation’s attributes as member variables along with get() and set() methods. This class inherits DBUser, and is in the DBObj namespace.
· Bookie
Like the two before, this class is a representation of its corresponding database relation. It also inherits the DBUser class, and is in the DBObj namespace.
· UsersManager
This class contains some specific validation functions that deal with NK_USERS. The methods can check if a username exists in the database, if an email exists in the database, or if a username and password combination are valid. This class is in the DBObjManager namespace.
· GamblerManager
This class handles the Gambler class object’s interaction with the database. It has methods to insert, retrieve, and delete Gamblers within the database. It also performs operations that a gambler needs to interface with the GUI such as inserting a bet, or getting casino information. This is a static class and is in the DBObjManager namespace.
· BookieManager
This class inserts, retrieves and deletes records from the NK_BOOKIE relation. It handles all operation done upon the Bookie class objects, however this side of the project was not developed. This is a static class in the DBObjManager namespace.

	

	HTML/XML
The html/xml programming consisted of what you would see in the web page. As I mentioned before, I utilized a free css template that was then modified and utilized to fit this project. Therefore, the skeleton of what I used was already coded, however the content of each page was coded by myself. This was perhaps the most difficult and important part of the project. I had to make sure each page was clearly and intuitively laid-out for the user. If a page were to appear convoluted to a user, they could potentially stop using the web site and leave for the competition. 
ASP.NET
This section of the code handled all of the form validation, and display objects in the website. The validation was constructed using the business rules formed in the planning of the database. Most of the display object were Gridview objects that display the information received from their data source. Most of these data sources were ObjectDataSources, which referred to methods developed in the GamblerManager class. These ASP object would pass an argument to the class method and would have a datatable object returned. Formatting was done of the Gridviews to make the display more visually appealing to the user. 

Major Features
This website has Forms authentication implemented as a security feature. This was written into the web.config file and also used to create a cookie in the login page. This provides users with a level of security to prevent fraudulent betting from occurring. 
Another feature of this project is the ability for the user to get information presented to them in real-time in the form of tables. The user is able to view information on their current and previous bets, as well as information on available games.
Also, users are able to place new bets based on the previously mentioned information. They are able to select an available game, a casino, a team, and a bet type. This function is paramount to this website’s purpose.






5. [bookmark: _Toc278744523]Development Process

The first and most difficult part of the developing an ASP.NET website with an Oracle database is the actual database connection. Surprisingly, there is not a good source of information on how to get a reliable connection between the two tools. Having completed the project, it now seems a trivial task, however at the time this was a very difficult step. Once I had connected to the database, the next step was to create classes to modularize the interaction with the database.
I created the database classes much in the style that we use at my place of work: we create classes to represent the relations in the database, and a static class to handle the transferring of these classes to and from the database. The result is a very clean way of grabbing form data and inserting it into the database. The next task was to get a template for the website.
As I have mentioned before, I used a free css template from thembot.com in order to make the website more visually appealing. In real-world applications, there are graphic designer that usually handle the aesthetics of the website while the code and functionality is left for the programmer. Nevertheless, I still needed to tweak some of the existing css and add some of my own to get the exact look that I wanted from this project. Once this was completed, I moved onto the login page.
For a site that handles a user’s financials as this one does, security is absolutely necessary. For this project I chose Forms authentication, because it seemed a simple and safe way of implementing security to the site. With a few entries into the web.config file, the security was in place. I was also able to create a cookie upon login to store the userID, which proved useful for presenting information directed at the particular user that has logged in. With this finished, I could then move on to page content.
The ASP.NET object used to display information were very easy to implement because I had created the class function to retrieve the information needed to display to the user. A few formatting modifications were needed to make the data clearer, as well as some template items. The template items combined some of the returned columns into one “item” to be displayed. The validation done was also easy using the CustomValidator and ValidationSummary objects. I was able to implement the business rules specified in planning the database, and convey error messages in a concise manner to the user.





6. [bookmark: _Toc278744524]Conclusion

The development of this project benefitted greatly from my experiences working at the Kern County Auditor-Controller’s office. Implementation was carried out with ease using the methods of development I have learned there, as well as the database planning and development skills from this class. It is unfortunate that I was not able to fully complete the project, but for the time available there is a lot that was completed. The reason I took this class was for the unique understanding of query language that is achieved, but I certainly feel as though I’ve learned more than just that; the database planning skills used will undoubtedly prove useful in the workplace. Possibly the best reward out of this was finally figuring out how to set up IIS 7.5 to host this website from my home computer, so that I could send the link to my family in Michigan and have them see what I created. 
Page | 78 

image3.jpeg
Login

Usemane:
Password:

Submit

Havenit signed up? Well,

mosey on over to our sign up

page and get ready to reap
the BIG BUCKS!!

SignUp





image4.jpeg
Sign Up

Usemane:
First Name:

LastName:

8
8
8
# 8

Street
City

state:

Zip Code:
Email
Routing #

Account #

Password

* You must enter a unique user name. 5

+ You must enter your first name.

+ You must enter your last name.
+ You must enter a street number and name
« You must enter a city name.

« You must enter a valid state abbreviation.

« You must enter a valid 5-digit zip code

« Aunique, valid email address is required

« You must enter a valid 9-digit routing number.
« You must enter a bank account number.
o You must enter a valid password between 612

characters





image5.jpeg
iz NFL Prognosticators Mialicious Sign Out

We may not be clairvoyant, but we can see you aren' either!

Home




image6.jpeg
Welcome to NFL Progz

NFL Progz is a website that links you with multiple Las Vegas casinos to give you the best chance to win
Don't like the point spread one casino has placed on game? Bet on It, then check out the other casino's
point spread and bet one that one! Repeat until fithy rich or devistatingly broke. What's the worst that could

happen?!
1
 Did anyone else see the whooping the Cowboys  Check out our Christmas Specials here.Fm just 3
bestowed upon the Lions lastweek? Injury or not,Matt  Kidding -there are no specials; but what could be more 2 Hot Games
Stafford will likelytake his time coming back Special than winning big ight before the holigays?!
Home Away  Date AverageBet
Your Current Bets: 2 Dalphins Packers 12212010 523500
Bet Team  GameTime Game Type BetType spread Bils  Bengals 1282010 $33348333
5200000 Bengals  12/1512010 10:00 AM reguiar season moneylne 3 Hons  Cizgas §252010 - Sihsor
5100 Lions 121152010 100 P reguiar season spread 7 Colts  Bils 12152010 $544.00
$100000 Bills 1211572010 100 P reguiar season spread 4 Bojprins Clanis © §21152080. 52250
70000 Packers  12:212010 100 Pl reguiar season moneyine 3 Bengals Texans 121152010 $2000.00

© 2006 Your Company | Design by: ThemeBin




image7.jpeg
Your Betting History:

Bet Team Game Time Game Tyj Bet Ty, Spread Winner?

$1.00 Bills 1/30/2010 super-bowl spread 2 Yes




image8.jpeg
Available Games:

Place Bet  Home Away Game Time Game Ty Weather
Select Dolphins (3-2-0) Packers (2-3-0) 12/21/2010 1:00 PM regular season 95F/Sunny
Select Bills (0-5-0) Bengals (2-2-0) 12/8/2010 10:00 AM regular season 85F/Sunny
Select Lions (1-4-0) Chargers (1-4-0) 12/15/2010 1:00 PM regular season 55F/Windy
Select Dolphins (3-2-0) Giants (3-2-0) 12/15/2010 10:00 AM regular season B5F/Rain
Select Colts (4-1-0) Bills (0-5-0) 12/15/2010 1:00 PM regular season 80F/Cloudy

Select Bengals (2-2-0) Texans (4-1-0) 12/15/2010 10:00 AM regular season 105F/Sunny




image9.jpeg
Place Your Bet

Casino Favorite Spread Game Info. Home: Lions (1-4-0)

Mirage Lions 7 Away: Chargers (1-4-0)
Game Time: 12/15/2010 1:00:00 PM

Bellagio Lions 7 Game Type: regular season

MGM Weather: 55F/Windy
Grand Lions 7

ren Team: |Chargers []
Venetian Lions 7 Casino: [Miags l
Caesars Amount:

e Lions 7
alace Type: [Money Line [<]

Wy Lions 7

Luxor Lions 7

Submit




image2.jpeg
Login

Usemane:
Password:

Submit




