1

David Wright
Table of Contents

1.     Fact-Finding Techniques and Information Gathering

1.1  Methods used to gather data………………………………………………………………….2
1.2  Operations on Data…………………………………………………………………………...2
1.3  Introduction to Enterprise/Organization……………………………………………………...2
1.4  Structure of the Enterprise……………………………………………………………………3
1.5  Itemized descriptions of major objects and relationships among between objects…………..3
1.6  Data views and operations for user groups…………………………………………………...3
2.    Conceptual Database Design

2.1  Entity Set Description………………………………………………………………………...4
2.2  Relationship Set Description………………………………………………………………...11
2.3  Related Entity Set…………………………………………………………………………...11
2.4  E-R Diagram……………………………………………………………………………..….12
3.    ER Model and Relational Model
3.1  Description of Models………………………………………………………………………….…….13
3.2  ER Database Converted to Relational Database…………………………………………….………..15
3.3  Relational Instances…………………………………………………………………………………..20

3.4  Queries………………………………………………………………………………………………..27
3.5  Query Representation…………………………………………………………………………………27
4.    Oracle Database Management Systems……………………………………………….……………...31
4.1  Oracle/Sql*Plus Descriptions…….…………………………………………………………………..31

4.2  Oracle Tables…………………………………………………………………………………………31

4.3  Oracle Queries………………………………………………………………………………………..35
5.    Stored Sub Programs………………………………………………………………………………….37
5.1  Stored Procedures Descriptions………………………………………………………………………37

5.2  Oracle Sub Programs…………………………………………………………………………………38
Phase 1: Fact-Finding Techniques, Information Gathering, and Conceptual Database Design

Fact-Finding Techniques
1.1  Methods used to gather data

Fact-Finding is used to determine how the database is going to be made and how the information will be able to work together to make the database fast and accurate.  So Fact-Finding is one of the most important parts in building a database.

Interviewing.  The methods for finding out the data that would be needed for the database was though obtain information from the source.  Interviewing is necessary to understand the business information.  It is also used for knowing which entities work with other entities. 

Data.  
Knowing the type of data that would be inputted as well as seeing the data that the employees look at in reports as well as how a person is able to be shown how hard they worked were important to put into the database.  Knowing how the boxes are stored and the type of information that is saved through the codes on the boxes and who controls the data was important too.
1.2  Techniques Used


After figuring out what type of data needed to be included, as well as how it would be possible to put the types of relations, it was then sorted into entities for two main parts which were Employees and the work side of the company.  

1.3  Introduction to Enterprise/Organization

The organization is a distributer company that stores shoes in a warehouse. They need to be able to obtain the information of their employees as well as how much the employees work.  The organization is also has the information of all the boxes that are currently stored in the warehouse and what leaves the warehouse.  The major reserve is the main employee group that determines where everything is stored in the warehouse.  Shipping is for what is shipped out.  There are also other groups that work in major reserve that take boxes that are requested from online orders and are then shipped out.  Those orders come separately from the normal orders that go to the main store.

1.4  Structure of the Enterprise


The structure of the enterprise is that the main office controls the information of the employees as well as to whether the employee is a regular employee or a temporary employee.  The amount of money they get paid is also located in the main office as well as the amount of hours that they work which is given to them through automatic time clock readers.  For the temps the company just needs to know the company to which they are paying for having the temp work there.  The company controls which boxes they have as well as what type of boxes they are.  There also has to be a way to show where the boxes will be located by the workers in the storage as well as the certain code areas to show where the boxes would go which depends on the age group of the box and whether the boxes have shoes or non-conveyable boxes which go in a separate area.  The main thing is that the boxes need to have a location prior to being stored by workers in the case that a worker loses a box which therefore will have an estimate on the location of that box.  For the online orders there is a separate part that will have the information of the person that ordered the box which isn’t seen to the workers, instead only the box number is given to them, as well as the location for the box.
1.5  Itemized descriptions of major objects and relationships among between objects

The first major object is the Employee.  The next two objects are Temp and Regular which are just entities separating what is stored for temps and what is stored for the regular employees.  The 2nd major object is the Storage entity which has a relation with Employee since the employee works on that table to locate the boxes and to remove boxes that have been taken out of it.  The DTC (online orders) is the 3rd major object and the Box is the last major object.  DTC has a relation with both Box and Storage since it has to give a location for the box in storage, and also get the ID for the box from Box.
1.6  Data views and operations for user groups


The data views would contain the data on all the boxes stored with the ID, name, and type of box it is.  The employees as well as the amount of boxes they worked on will also be stored to be viewed by the higher people in the company.  There can also be a list of the online orders with the order and the person who ordered it.  Also there needs to be a way to show all the boxes that were received for the day, and all the boxes that were shipped out which could be found using a storage table.  The user would have to input data for the employees, mainly the amount of hours worked would be changing often.  The computer would automatically input the data for the boxes upon arrival.  The DTC will have to be inputted from the internet and have the information sent to the DTC office to know which orders to ship.

Conceptual Database Design
2.1  Entity Set Description
· Name: Employee

· Description: Holds the names of the employee, SSN, Address, Date of Birth, EmployeeID, and the Position the person holds.  The information will be inserted whenever there is a new employee, and will not be deleted.  The information will be updated whenever there is a change in position, address, or when there is new information that was originally NULL.

· Candidate Keys: EmployeeID, Name, SSN, Address, Bdate, Position

· Primary Keys: EmployeeID

· Strong/Week Entity: strong

· Fields to be Indexed: SSN, EmployeeID
	Name
	EmployeeID
	SSN
	Name
	Address
	Bdate
	Position

	Description
	Employee ID number
	Social Security Number
	Employee’s Full Name
	Employee’s Full Address
	Employee’s date of birth for age
	Position of employee

	Domain/Type
	Unsigned integer
	Unsigned Integer
	String
	String
	Date
	String

	Value Range
	32
	9
	Any
	Any
	8
	Any

	Default Value
	None
	None
	None
	None
	None
	None

	Nullable?
	No
	Yes
	No
	Yes
	Yes
	No

	Unique?
	Yes
	Yes
	No
	No
	No
	No

	Single or multiple value
	Single
	Single
	Single
	Single
	Single
	Single

	Simple or Composite
	Simple
	Simple
	Composite
	Composite
	Simple
	Simple


· Name: TimeCard

· Description: Holds the amount the employees will be paid and the hours they worked

· Candidate Keys: EmployeeID, Hours, Payment

· Primary Keys: EmployeeID

· Strong/Week Entity: weak

· Fields to be Indexed: EmployeeID

	Name
	EmployeeID
	Hours
	Payment
	Date

	Description
	Employee ID number
	Hours worked per week
	Amount paid to employee per hour
	The date the employee got paid

	Domain/Type
	Unsigned integer
	Unsigned integer
	Unsigned integer
	String

	Value Range
	32
	3
	Any
	Any

	Default Value
	None
	None
	None
	None

	Nullable?
	No
	Yes
	Yes
	No

	Unique?
	Yes
	No
	No
	No

	Single or multiple value
	Single
	Single
	Single
	No

	Simple or Composite
	Simple
	Simple
	Simple
	Simple


· Name: Shoe

· Description: Holds the information on the shoes that will be put into the boxes.
· Candidate Keys: ShoeID, Name, Brand, AgeGroup

· Primary Keys: ShoeID

· Strong/Week Entity: strong

· Fields to be Indexed: ShoeID

	Name
	ShoeID
	Name
	Brand
	AgeGroup

	Description
	The ID for the shoe
	The Full name of the shoe
	The brand company
	Mens, Womens, Kids

	Domain/Type
	Unsigned integer
	String
	String
	String

	Value Range
	64
	Any
	Any
	Any

	Default Value
	None
	None
	None
	None

	Nullable?
	No
	Yes
	Yes
	Yes

	Unique?
	Yes
	No
	No
	No

	Single or multiple value
	Single
	Single
	Single
	Single

	Simple or Composite
	Simple
	Simple
	Simple
	Simple


· Name: Box
· Description: Holds the information on the boxes that are currently in the system.
· Candidate Keys: BoxID, Location, Code
· Primary Keys: BoxID
· Strong/Week Entity: strong

· Fields to be Indexed: BoxID
	Name
	BoxID
	Location
	Code

	Description
	The ID for the box
	The location that the box is stored
	The code that tells whether the box needs to be stored or sent for shipping.

	Domain/Type
	Unsigned integer
	Unsigned integer
	String

	Value Range
	64
	8
	Any

	Default Value
	None
	None
	None

	Nullable?
	No
	Yes
	Yes

	Unique?
	Yes
	No
	No

	Single or multiple value
	Single
	Single
	Single

	Simple or Composite
	Simple
	Simple
	Simple


· Name: Works_Box
· Description: Has the information from the Box table in BoxID, as well as the Employee working on the certain BoxID, and the possible Locations of the stored box.  The time is given once a box is registered and can be changed every time it is stored.  So that employees can work on the boxes.  The purpose of this is to find out the times that the boxes were stored, and it updates the new locations with the associated employee that set the new location.  This is used for looking for boxes that aren’t currently in the correct location so that the employee is questioned about the location.
· Candidate Keys: BoxID, EmployeeID, Location, Time
· Primary Keys: Time
· Strong/Week Entity: strong

· Fields to be Indexed: BoxID, EmployeeID
	Name
	BoxID
	EmployeeID
	Location
	Time

	Description
	ID of box obtained from Box table
	Employee ID Number
	The location that the box is stored
	The time the box was received

	Domain/Type
	Unsigned integer
	Unsigned integer
	Unsigned integer
	Unsigned integer

	Value Range
	64
	32
	8
	11

	Default Value
	Box Table
	None
	None
	None

	Nullable?
	No
	No
	No
	No

	Unique?
	No
	No
	No
	Yes

	Single or multiple value
	Single
	Single
	Single
	Single

	Simple or Composite
	Simple
	Simple
	Simple
	Simple


· Name: Shoe_Box

· Description: Stores information for the quantity of shoes in a box.

· Candidate Keys: ShoeID, BoxID, Qty
· Primary Keys: ShoeID, BoxID
· Strong/Week Entity: strong

· Fields to be Indexed: BoxID, ShoeID
	Name
	ShoeID
	BoxID
	Qty

	Description
	The ID for the shoe
	ID of box obtained from Box table
	The quantity of shoes that box contains

	Domain/Type
	Unsigned integer
	Unsigned integer
	Unsigned integer

	Value Range
	64
	64
	32

	Default Value
	None
	Box Table
	None

	Nullable?
	No
	Yes
	No

	Unique?
	Yes
	No
	No

	Single or multiple value
	Single
	Single
	Single

	Simple or Composite
	Simple
	Simple
	Simple


· Name: Order
· Description: Hold the information from what is bought online.

· Candidate Keys: OrderID, ShoeID, Qty, Name, Address, PhoneNum

· Primary Keys: OrderID, ShoeID, Qty
· Strong/Week Entity: strong

· Fields to be Indexed: OrderID, ShoeID, Qty
	Name
	OrderID
	ShoeID
	Qty
	Name
	Address
	PhoneNum

	Description
	The ID that is given when the order is placed
	The ID for the shoe
	The quantity of shoes that box contains
	The name of the buyer
	The address of the buyer
	The phone number of the buyer

	Domain/Type
	Unsigned integer
	Unsigned integer
	Unsigned integer
	String
	String
	Unsigned integer

	Value Range
	32
	64
	32
	Any
	Any
	10

	Default Value
	None
	None
	None
	None
	None
	None

	Nullable?
	No
	No
	No
	Yes
	Yes
	Yes

	Unique?
	Yes
	Yes
	No
	No
	No
	No

	Single or multiple value
	Single
	Single
	Single
	Single
	Single
	Single

	Simple or Composite
	Simple
	Simple
	Simple
	Composite
	Simple
	Simple


2.2  Relationship Set Description

	Name
	Works_Box
	Shoe_Box
	TimeCard

	Description
	The employee that works changing values for Box as well as putting the times that the data was inputted.
	Holds the relation between Shoe and Box on how many small shoe boxes are in each large box.
	Holds the hours and amount the employees get paid.

	Entity set involved


	Employee and Box
	Order, Shoe, and Box
	Employee

	Mapping cardinality


	M:1, M:1
	M:M, M:M, M:1
	1:1

	Descriptive field


	None
	None
	None

	Participation Constraint


	Partial
	Partial
	Total


2.3  Related Entity Set


There is a disjoint constraint in the Position part that wasn’t full explored.  It could branch out to management and to Floor Workers where the Floor workers would be overseen by the Management.
2.4  E-R Diagram
[image: image1.png]Order
M [OrderiD (PK)
ShoelD (FK) Shoe
Qty (FK)
e 1 [shoelD (PK)
Name
Employee | 1 Phone Num h,‘;m o
EmployeelD (PK)
SSN
Name IShoe_Box
M
Address M | ShoelD (FK)
Bdate BoxID (FK) "
Position Qty (PK)
TimeCard Box
EmployeelD (FK) M [Boxip (PK)
Hours T Location (FK)
Payment Code
Works_Box
w| BexiD (FK)
EmployeelD(FK) [ M
Location (PK)
Time





Phase 2: Relational Model

ER Model and Relational Model
Description of Both Models

The purpose of the ER Model is to make the entities known.  It also uses the ER diagram to make the relations easier to read by just looking at the diagram.  It uses entities and relations in the model.  The relational model uses tuples as well as relational algebra and relational calculus to calculate queries with the tuples.  So the relational model is more of the second step in making a database.  It uses the entities that were made in the ER model, and makes them into relationships with the other entities.  This is important for setting up keys and inputting data. 
ER Model compared to Relational Model
The ER Model’s main purpose is for the ER-diagram and the easy readability of it for a person that isn’t working on the database.  It is much easier for someone to look at the diagram and look at each individual piece of the entities in comparison to the Relational Model.  The relational model however is more important for the database creators since it sets up the tuples and the domains.  It is also the step right before going into a database since all the information needed for a database happens on this step.  It is also a good start for making queries through the use of relational algebra and relational calculus.  So unlike the ER Model which looks at each individual entity, the Relational Model looks at how those entities connect with other entities as a relation between the others.
Conversion from ER Model to Relational Model
The first part for converting from the ER Model to the Relational Model is to create the tables for the entity sets that will be used in the relational model.  The columns in the table will come from the attributes in the entity set.  Then there is making the primary key.  Doing this will separate weak entity sets and strong entity sets which the strong ones can be by themselves while the weak entity sets cannot.  The weak entity set will use a foreign key, and some strong entity sets will also use foreign keys to make relationships with other entities, with the other ones having a primary key of their own if they are strong entities.  
Entities with simple attributes can be made into one column while composite attributes can be made into more than one.  If a primary key needs to be made from a composite attribute it can be made by making those pieces into primary keys.  
For relation types that have 1:1 it is where only one attribute can be in the other list, in other words no duplicates between the two entities.  Therefore if a primary key is put into a M:1 where it goes into the 1, then there cannot be duplicates of the values that are placed into the other entity.  1:M is the case where there can be many values sent over from one entity to the other with multiple duplicates in the 2nd one as in a case where there is one person working on many different projects.  M:M is where there can be many people working on many different projects and the reverse is also true.
For the ISA superclass/subclass, it is a 1:1 where only the subset goes to the set, so that the superclass is not broken down into the subclass, but only that the subclasses can be a part of the superclass, so it is only in one direction which is the subclass going to the super class.  For the HASA, it is much like having a part of another entity inside of another entity.  So for HASA they are still separate.  
DBMS enforces the entity constraints by making the entities be the same size and making sure that there are not NULL values in the primary keys.  This is important for primary keys because if there were many NULL values in the primary keys then there would be no way to tell the differences between the NULLs.  For reference constraints, there has to be a value that is being used in the foreign key before it can show up as a foreign key, so it needs to be a primary key in another table.  

E-R Database Converted to Relational Database
Employee Relation
Attributes

· EmployeeID

· Domain: unsigned integer: 1 to 2^32-1. Cannot be NULL.

· Name

· Domain: string, that holds name in: “Last First” format.  Single space between last and first name.  It is single-valued and cannont be NULL.

· SSN
· Domain: unsigned integer: 1 to 2^9-1. Cannon be NULL.

· Address

· Domain: string, that holds the whole address in a single value.  Can be NULL.
· Bdate

· Domain: Date, holds the date in “year month day” format as a single value. Cannot be NULL.
· Position

· Domain: String, holds the name of the position the person holds, single value, Cannot be NULL.

Constraints

· Primary Key: EmployeeID is primary key. Must be unique and not NULL.

Candidate Keys

· EmployeeID, SSN

TimeCard Relation

Attributes

· EmployeeID
· Domain: unsigned integer: 1 to 2^32-1. Cannot be NULL.

· Hours

· Domain: unsigned integer 1 to 2^3-1. Can be NULL.

· Payment

· Domain: unsigned integer, 1 to 2^3-1. Can be NULL.
· Date

· Domain: string that holds the date. Cannot be NULL

Constraints

· Primary Key: EmployeeID is the primary keys. Must not be NULL.

· Foreign Key: EmployeeID has value from the primary key in Employee.

Candidate Keys

· EmployeeID

Shoe Relation

Attributes

· ShoeID

· Domain: unsigned integer, 1 to 2^64-1. Cannot be NULL.

· Name

· Domain: string, contains one name that single value. Can be NULL.

· Brand

· Domain: string, a single value brand name that can be NULL.

· AgeGroup

· Domain: string, a single value age group that cannot be NULL.

Constraints

· Primary Key: ShoeID is primary key.  Must be unique and not NULL.

Candidate Keys

· ShoeID

Box Relation
Attributes

· BoxID

· Domain: unsigned integer, 1 to 2^64-1. Cannot be NULL.

· Location

· Domain: unsigned integer, 1 to 2^8. Can be NULL.

· Code

· Domain: string, a single value code that can be NULL.

Constraints

· Primary Key: BoxID is primary key.  Must be unique and not NULL.

Candidate Keys

· BoxID

Works_Box Relation
Attributes

· BoxID

· Domain: unsigned integer, 1 to 2^64-1. Cannot be NULL.

· EmployeeID

· Domain: unsigned integer, 1 to 2^32-1. Cannot be NULL.

· Location

· Domain: unsigned integer, 1 to 2^8-1. Cannot be NULL.

· Time
· Domain: unsigned integer, 1 to 2^11-1. Cannot be NULL.
Constraints

· Primary Key: Time is the primary key. Must not be NULL.
· Foreign Key: BoxID has value from primary key in Box, EmployeeID has value from primary key in Employee.
Candidate Keys

· BoxID, EmployeeID, Location.
Shoe_Box Relation
Attributes

· ShoeID

· Domain: unsigned integer, 1 to 2^64-1. Cannot be NULL.

· BoxID

· Domain: unsigned integer, 1 to 2^64-1. Can be NULL.

· Qty
· Domain: unsigned integer, 1 to 2^32-1. Cannot be NULL.
Constraints

· Primary Key: ShoeID is primary key, cannot be NULL, BoxID is a primary key, can be NULL

· Foreign Key: ShoeID has primary key from Shoe, BoxID has primary key from Box.
Candidate Keys

· ShoeID, BoxID
Order Relation
Attributes

· OrderID

· Domain: unsigned integer, 1 to 2^32-1. Cannot be NULL.

· ShoeID

· Domain: unsigned integer, 1 to 2^64-1. Cannot be NULL.

· Qty

· Domain: unsigned integer, 1 to 2^32^-1. Cannot be NULL

· Name

· Domain: string, in “Last First name” format using single value. Can be NULL.

· Address

· Domain: string, uses single value. Can be NULL.

· PhoneNum

· Domain: unsigned integer, 1 to 2^10-1. Can be NULL.

Constraints

· Primary Key: OrderID is a primary key, cannot be NULL, ShoeID is primary key, cannot be NULL, Qty is a primary key, cannot be NULL.
· Foreign Key: ShoeID has a primary key from Shoe, Qty has a primary key from Shoe_Box.
Candidate Keys

· OrderID, ShoeID, Qty
Relational Instances
Employee (EmployeeID, SSN, Name, Address, Bdate, Position)
	EmployeeID
	SSN
	Name
	Address
	Bdate
	Position

	1110
	016701850
	Eddie L. Battaglia
	4119 Leverton Cove Road Bakersfield CA
	1974/6/28
	Manager

	1143
	578749483
	Antonio S. Thomas


	358 Fairfield Road Bakersfield CA
	1967/3/19
	Supervisor

	1232
	468642312
	Tim V. Strong
	982 Pritchard Court Bakersfield CA
	1961/8/16
	Supervisor

	1250
	269324535
	Elden E. Seymour
	1080 Rainbow Drive Bakersfield CA
	1971/6/5
	Supervisor

	1261
	623585162
	Bryant D. Dickson
	3561 Jim Rosa Lane Bakersfield CA
	1972/6/31
	Worker

	1297
	507104413
	Raul R. Jenkins
	4525 Kyle Street Bakersfield CA
	1976/3/8
	Worker

	1301
	402575117
	Robert M. Barber
	3848 Zappia Drive Bakersfield CA
	1975/10/26
	Worker

	1311
	554285507
	Holly K. Kidd
	142 Carriage Court Bakersfield CA
	1985/7/5
	Worker

	1328
	519949199
	William M. Brunswick
	4897 Science Center Drive Bakersfield CA
	1979/9/17
	Worker

	1438
	606144613
	Irene G. Hutson
	2743 Armbrester Drive Bakersfield CA
	1987/8/23
	Worker

	1739
	218211216
	William B. Mahon
	3057 Flanigan Oaks Drive Bakersfield CA
	1975/12/25
	Worker

	1829
	610300534
	Micah C. Sparling
	2628 Park Avenue Bakersfield, CA
	1978/9/20
	Worker


TimeCard (EmployeeID, Hours, Payment)

	EmployeeID
	Hours
	Payment
	Date

	1110
	40
	30
	4/5/2010

	1143
	42
	25
	4/5/2010

	1232
	40
	25
	4/5/2010

	1250
	48
	25
	4/5/2010

	1261
	48
	25
	4/5/2010

	1297
	40
	16
	4/5/2010

	1301
	40
	16
	4/5/2010

	1311
	48
	15
	4/5/2010

	1328
	NULL
	14
	4/5/2010

	1438
	48
	14
	4/5/2010

	1739
	48
	14
	4/5/2010

	1829
	NULL 
	14
	4/5/2010


Shoe (ShoeID, Name, Brand, AgeGroup)
	ShoeID
	Name
	Brand
	AgeGroup

	3243253272
	Flex Ride Pro
	Reebok
	Kid

	8766567465
	Bryce
	Buster Brown

	Kid

	8767576873
	Urbantrack II Rage
	Skechers
	Kid

	9879876863
	Partial
	Madden Girl
	Women

	8768758764
	Struts
	Sketchers
	Women

	8765645643
	Pollie
	Rocket Dog
	Women

	6577865463
	Adder
	Vans
	Men

	8767867578
	Ferris
	Vans
	Men

	3432532532
	Kinetic Core Glide
	Sketchers
	Men


Box (BoxID, Location, Code)
	BoxID
	Location
	Code

	4387594397
	30262024
	NULL

	8766567465
	20312037
	PP


	8767576873
	20324056
	NULL

	9879876863
	20524055
	NULL

	8768758764
	30214034
	PK

	8765645643
	30134012
	PK

	6577865463
	30623027
	NULL

	8767867578
	10432032
	NULL

	3432532532
	10652012
	PKH

	7826374863
	10420001
	PP


Works_Box (BoxID, EmployeeID, Location, Time)
	BoxID
	EmployeeID
	Location
	Time

	4387594397
	1261
	30262023
	12:40:30 4/2/2010

	8767576873
	1297
	20324056
	14:50:21 4/2/2010

	9879876863
	1297
	20524055
	10:42:23 4/3/2010

	8768758764
	1301
	30214034
	13:12:32 4/4/2010

	8765645643
	1739
	30134012
	10:32:23 4/5/2010

	6577865463
	1311
	30623042
	11:20:32 4/5/2010

	8767867578
	1739
	10432032
	8:50:32 4/5/2010

	3432532532
	1438
	10652012
	8:20:43 4/2/2010

	4387594397
	1261
	30262024
	12:42:30 4/2/2010


Shoe_Box (ShoeID, BoxID, Qty)
	ShoeID
	BoxID
	Qty

	3243253272
	4387594397
	4

	8766567465
	8767576873
	5

	8767576873
	9879876863
	8

	9879876863
	8768758764
	12

	8768758764
	8765645643
	6

	8765645643
	6577865463
	4

	6577865463
	8767867578
	8

	8767867578
	3432532532
	3

	3432532532
	4387594397
	6


Order (OrderID, ShoeID, Qty, Name, Address, PhoneNum)
	OrderID
	ShoeID
	Qty
	Name
	Address
	PhoneNum

	6346243
	3243253272
	4
	Tracy K. Goza
	1546 Woodridge Lane
	9013602007

	3535434
	8766567465
	5
	Chester B. Smith
	2829 Coulter Lane
	8042474629

	3543443
	8767576873
	8
	Jared L. Tate
	4754 Ray Court
	9012625776

	2353452
	9879876863
	12
	Anna J. Walker
	4465 Hill Street
	4198187237

	2345433
	8768758764
	6
	Jane T. Graham
	3433 Coal Road
	5706587948

	6432434
	8765645643
	4
	Helena J. Webb
	4850 Limer Street
	7064727435

	6543543
	6577865463
	8
	Nathan E. Foster
	1802 Travis Street
	7724858249

	4336432
	8767867578
	3
	Joseph L. Pena
	2964 Rodney Street
	6363631113

	9837847
	3432532532
	6
	Leroy R. Lightner
	3765 Sunrise Road
	7032004344


Queries
1. Select employees who have a payment greater than 15 and have worked for more than 40 hours.
2. Select employees who have set a location on 2 or more boxes.
3. Select employees who have moved the same box to a new location more than once.

4. Select boxes which have 2 or fewer shoes in them.

5. Select orders which don’t have a location.
6. Select boxes which have shoes in the Men’s age group.
7. Select boxes where Bryan D. Dickson located them.

8. Find shoes where there is no box location for them.

9. Find employees where Hours are less than 48 and located a women’s shoe.
10. Select employees who have located shows from the Men’s age group and the time was later than 12:00:00 4/2/2010.
Query Representation
Select employees who have a payment greater than 15 and have worked for more than 40 hours.
Relational Algebra: π (e.EmployeeID, e.Name) σ (Employee e x Timecard t) e.EmployeeID = Timecard.EmployeeID ^ t.Payment > 15 ^ t.Hours > 40
Tuple Relational Calculus: {e | (Employee (e) ^ (t (Timecard (t) ^ e.EmployeeID = Timecard.EmployeeID ^ t.Payment > 15 ^ t.Hours > 40)}
Domain Relational Calculus: { <e> | Employee (e,_,_,_,_,_) ^ (h(pTimecard (e, h, p) ^ p > 15 ^ h > 40}
Select employees who have set a location on 2 or more boxes.

Relational Algebra: π (e.EmployeeID, e.Name) σ (Employee e x Works_Box b x Works_box b2) e.employeeID = b.EmployeeID ^ b.EmployeeID = b2.EmployeeID ^ b.BoxID != b2.BoxID
Tuple Relational Calculus: {e | (Employee (e) ^ (b (Works_Box (b) ^ (b2) (Works_box(b2) ^ e.employeeID = b.EmployeeID ^ b.EmployeeID = b2.EmployeeID ^ b.BoxID != b2.BoxID}
Domain Relational Calculus: {<e> | Employee (e,_,_,_,_,_) ^ (b(b2(L(LWorks_Box (b, e, L, _) ^ (Works_Box (b2, e, L2, _) ^ b != b2} 
Select employees who have moved the same box to a new location more than once.
Relational Algebra: :   π (e.EmployeeID, e.Name) σ (Employee e x Works_Box b x Works_Box b2) b.Location != b1.Location ^ e.EmployeeID = b.EmployeeID ^ b.EmployeeID = b2.EmployeeID ^ b.BoxID = b2.BoxID
Tuple Relational Calculus: {e | Employee(e) ^ (b) (Works_Box(b) ^ (b2)(Works_Box(b2) ^ b.Location != b1.Location ^ e.EmployeeID = b.EmployeeID ^ b.EmployeeID = b2.EmployeeID ^ b.BoxID = b2.BoxID)}
Domain Relational Calculus: {<e> | Employee (e,_,_,_,_,_) ^ (b(b2(L(LWorks_Box (b, e, L, _) ^ (Works_Box (b2, e, L2, _) ^ L != L2}
Select boxes which have 2 or fewer shoes in them.
Relational Algebra: :   π (b.BoxID) σ (Box b x Shoe_Box s) b.BoxID = s.BoxID ^ Qty < =2
Tuple Relational Calculus: {b | Box(b) ^ (s)(Shoe_Box(s) ^ b.BoxID = s.BoxID ^ Qty <= 2)}
Domain Relational Calculus: {<b> | Box (b, _, _) ^ (s(q(Shoe_Box(s, b, q) ^ q < =2}
Select orders which do not have a location.
Relational Algebra: :   π (o.OrderID, o.ShoeID, o.Name) σ (Order o x Shoe_Box s x Works_Box b) o.ShoeID = s.ShoeID ^ b.BoxID = s.BoxID ^ b.Location = ‘NULL’
Tuple Relational Calculus: {o | Order(o) ^ (s) (Shoe_Box(s) ^ (b) (Works_Box(b) ^ o.ShoeID = s.ShoeID ^ b.BoxID = s.BoxID ^ b.Location = ‘NULL’)}
Domain Relational Calculus: {<o, s> | Order (o, s, _, _, _, _) ^ (b(LShoe_Box(s, b, _) ^  Works_Box(b, _, L, _) ^ L = “NULL”}
Select boxes which have shoes in the Men’s age group.
Relational Algebra: :   π (b.BoxID) σ(Box b x Shoe_Box sb x Shoe s) ^ b.BoxID = sb.BoxID ^ sb.ShoeID = s.ShoeID ^ s.AgeGroup = “Mens”
Tuple Relational Calculus: {b | Box(b) ^ (sb) (s) (Shoe_Box(sb) ^ Shoe(s) ^ b.BoxID = sb.BoxID ^ sb.ShoeID = s.ShoeID ^ s.AgeGroup = “Mens”)}
Domain Relational Calculus: {<b> | Box (b, _, _) ^ (s) (a) (Shoe_Box (s, b, _) ^ Shoes (s, _, _, a) ^ a = “Mens”)}
Select boxes where Bryan D. Dickson located them.
Relational Algebra:   π (b.BoxID) σ (Box b x Works_Box wb x Employee e) b.BoxID = wb.BoxID ^ wb.EmployeeID = e.EmployeeID ^ e.Name = “Bryan D. Dickson”
Tuple Relational Calculus: {b | Box (b) ^ (wb) (e) (Works_Box (wb) ^ Employee (e) ^ b.BoxID = wb.BoxID ^ wb.EmployeeID = e.EmployeeID ^ e.Name = “Bryan D. Dickson” )}
Domain Relational Calculus: {<b> | Box (b, _, _) ^ (e) (n) (Works_Box (b, e, _, _) ^ Employee (e, _, n, _, _, _) ^ n = “Bryan D. Dickson”
Find shoes where there is no box location for them.
Relational Algebra: π(s.ShoeID, s.Name) σ (Shoe s x Shoe_Box sb x Box b) s.ShoeID = sb.ShoeID ^ sb.BoxID = b.BoxID ^ b.Location = “NULL”
Tuple Relational Calculus: {s | Shoe (s) ^ (sb) (b) (Shoe_Box (sb) ^ Box (b) ^ s.ShoeID = sb.ShoeID ^ sb.BoxID = b.BoxID ^ b.Location = “NULL”)}
Domain Relational Calculus: {<s> | Shoe (s, _, _, _) ^ (b) (L) (Shoe_Box (s, b, _) ^ Box (b, L, _) ^ L = “NULL”
Find employees where Hours are less than 48 and located a women’s shoe.
Relational Algebra:   π(e.EmployeeID, e.Name)  σ (Employee e x TimeCard t x Works_Box wb x Shoe_Box sb x Shoe s) e.EmployeeID  = t.EmployeeID ^ e.EmployeeID = wb.EmployeeID ^ t.Hours < 48 ^ wb.BoxID = sb.BoxID ^ s.ShoeID = sb.ShoeID ^ s.AgeGroup = “Women”
Tuple Relational Calculus: {e | Employee (e) ^ (t) (wb) (TimeCard (t) ^ Works_Box (wb) ^ e.EmployeeID  = t.EmployeeID ^ e.EmployeeID = wb.EmployeeID ^ t.Hours < 48 ^ (sb) (s) (Shoe_Box (sb) ^ Shoe (s) ^ wb.BoxID = sb.BoxID ^ s.ShoeID = sb.ShoeID ^ s.AgeGroup = “Women”))}
Domain Relational Calculus: {<e> | Employee (e, _, _, _, _, _) ^ (h) (b) (s) (a) (TimeCard (e, h, _) ^ Works_Box (b, e, _, _) ^ Shoe_Box (s, b, _) ^ Shoe (s, _, _, a) ^ a = “Women”)}
Select employees who have located shows from the Men’s age group and the time was later than 12:00:00 4/2/2010.

Relational Algebra:   π(e.EmployeeID, e.Name)  σ(Employee e x Works_Box wb x Shoe_Box sb x Shoe s) e.EmployeeID = wb.EmployeeID ^ wb.BoxID = sb.BoxID ^ sb.ShoeID = s.ShoeID ^ wb.Time > 12:00:00 4/2/2010 ^ s.AgeGroup = “Mens”
Tuple Relational Calculus: {e | Employee (e) ^ (wb) (sb) (s) (Works_Box (wb) ^ Shoe_Box (sb) ^ Shoe (s) ^ e.EmployeeID = wb.EmployeeID ^ wb.BoxID = sb.BoxID ^ sb.ShoeID = s.ShoeID ^ wb.Time > 12:00:00 4/2/2010 ^ s.AgeGroup = “Mens”)}
Domain Relational Calculus: {<e> | Employee (e, _, _, _, _, _) ^ (b) (s) (t) (a) (Works_Box (b, e, _, t) ^ Shoe_Box (s, b, _) ^ Shoe (s, _, _, a) ^ t > 12:00:00 4/2/2010 ^ a = “Mens”)}
Phase 3: Oracle Database Management Systems

Oracle/Sql Plus
(1) The main purpose of Sql*Plus is to make it easy for people to run queries on the data bases.  It makes it easy because you can save the queries as files and then run them; likewise it is easy to save the tables to be reopened.  The functionality also allows the queries to be run without saving into a file as well.  When making the tables it makes sure to keep the constraints how they are supposed to work to keep the integrity of the data.
(2) The schema objects that are allowed are the creation of the tables.  The purpose of this is to make sure that everything in the table is set up correctly so when queries are done on it then will work correctly.  Procedures are also allowed to work on the data was well, and views are also a part of the schema objects.
Tables:

Dw_Employee

EMPLOYEEID        SSN NAME                 ADDRESS

---------- ---------- -------------------- ----------------------------------------

BDATE                                    POSITION

---------------------------------------- ----------

      1110   16701850 Eddie Battagli       4119 Leverton Cove Road

1974/6/28                                Manager

      1143  578749483 Antonio S. Thomas    358 Fairfield Road

1967/3/19                                Supervisor

      1232  468642312 Tim V. Strong        982 Pritchard Court

1961/8/16                                Supervisor

      1250  269324535 Elden E. Seymour     1080 Rainbow Drive

1971/6/5                                 Supervisor

      1261  623585162 Bryant D. Dickson    3561 Jim Rosa Lane

1972/6/31                                Worker

      1297  507104413 Raul R. Jenkins      4525 Kyle Street

1976/3/8                                 Worker

      1301  402575117 Robert M. Barber     3848 Zappia Drive

1975/10/26                               Worker

      1311  554285507 Holly K. Kidd        142 Carriage Court

1985/7/5                                 Worker

      1328  519949199 William M. Brunswick 4897 Science Center Drive

1979/9/17                                Worker

      1438  606144613 Irene G. Hutson      2743 Armbrester Drive

1987/8/23                                Worker

      1739  218211216 William B. Mahon     3057 Flanigan Oaks Drive

1975/12/25                               Worker

      1829  610300534 Micah C. Sparling    2628 Park Avenue

1978/9/20                                Worker
DW_Timecard

CS342 SQL> select * from dw_Timecard

  2  ;

EMPLOYEEID      HOURS    PAYMENT TDATE

---------- ---------- ---------- ----------

      1110         40         30 4/5/2010

      1143         42         25 4/5/2010

      1232         40         25 4/5/2010

      1250         48         25 4/5/2010

      1261         48         25 4/5/2010

      1297         40         16 4/5/2010

      1301         40         16 4/5/2010

      1311         48         15 4/5/2010

      1328                    14 4/5/2010

      1438         48         14 4/5/2010

      1739         48         14 4/5/2010

      1829                    14 4/5/2010

12 rows selected.
DW_Shoe

CS342 SQL> select * from dw_Shoe

  2  ;

    SHOEID NAME                 BRAND                AGEGROU

---------- -------------------- -------------------- -------

3243253272 Flex Ride Pro        Reebok               Kid

8766567465 Bryce                Buster Brown         Kid

8767576873 Urbantrack II Rage   Skechers             Kid

9879876863 Partial              Madden Girl          Women

8768758764 Struts               Sketchers            Women

8765645643 Pollie               Rocket Dog           Women

6577865463 Adder                Vans                 Men

8767867578 Ferris               Vans                 Men

3432532532 Kinetic Core Glide   Sketchers            Men

9 rows selected.
DW_Box
CS342 SQL> select * from dw_Box

  2  ;

     BOXID   LOCATION CODE

---------- ---------- ----------

4387594397   30262024

8766567465   20312037 PP

8767576873   20324056

9879876863   20524055

8768758764   30214034 PK

8765645643   30134012 PK

6577865463   30623027

8767867578   10432032

3432532532   10652012 PKH

7826374863   10420001 PP

10 rows selected.
DW_WorksBox

CS342 SQL> select * from dw_Worksbox

  2  ;

     BOXID EMPLOYEEID   LOCATION       TIME

---------- ---------- ---------- ----------

4387594397       1261   30262023 1.2403E+10

8767576873       1297   20324056 1.4502E+11

9879876863       1297   20524055 1.0422E+11

8768758764       1301   30214034 1.3123E+11

8765645643       1739   30134012 1.0322E+11

6577865463       1311   30623042 1.1203E+11

8767867578       1739   10432032 8.5032E+10

3432532532       1438   10652012 8.2043E+10

4387594397       1261   30262024 1.2423E+11

9 rows selected.
Dw_ShoeBox

CS342 SQL> select * from dw_ShoeBox

  2  ;

    SHOEID      BOXID        QTY

---------- ---------- ----------

3243253272    4387594397          4

8766567465    8767576873          5

8767576873    9879876863          8

9879876863    8768758764         12

8768758764    8765645643          6

8765645643    6577865463          4

6577865463    8767867578          8

8767867578    3432532532          3

3432532532    4387594397          6

9 rows selected.
DW_Order

CS342 SQL> select * from dw_order

  2  ;

   ORDERID     SHOEID        QTY NAME                 ADDRESS                         PHONENUM

---------- ---------- ---------- -------------------- ------------------------------ ----------

   6346243 3243253272          4 Tracy K. Goza        1546 Woodridge Lane           9013602007

   3535434 8766567465          5 Chester B. Smith     2829 Coulter Lane             8042474629

   3543443 8767576873          8 Jared L. Tate        4754 Ray Court                9012625776

   2353452 9879876863         12 Anna J. Walker       4465 Hill Street              4198187237

   2345433 8768758764          6 Jane T. Graham       3433 Coal Road                5706587948

   6432434 8765645643          4 Helena J. Webb       4850 Limer Street             7064727435

   6543543 6577865463          8 Nathan E. Foster     1802 Travis Street            7724858249

   4336432 8767867578          3 Joseph L. Pena       2964 Rodney Street            6.3636E+10

   9837847 3432532532          6 Leroy R. Lightner    3765 Sunrise Road             7032004344

9 rows selected.
Queries
1.
Select e.EmployeeID, e.Name

From dw_Employee e, dw_Timecard t

Where t.Payment > 15 AND t.Hours > 40 AND e.EmployeeID = t.EmployeeID;
EMPLOYEEID NAME

---------- --------------------

      1143 Antonio S. Thomas

      1250 Elden E. Seymour

      
      1261 Bryant D. Dickson
2.

Select e.EmployeeID, e.Name

From dw_Employee e, dw_WorksBox b, dw_WorksBox b2

Where e.employeeID = b.EmployeeID AND b.EmployeeID = b2.EmployeeID AND

b.BoxID != b2.BoxID;
EMPLOYEEID NAME

---------- --------------------

      1297 Raul R. Jenkins

      1297 Raul R. Jenkins

      1739 William B. Mahon

    
      1739 William B. Mahon
3.
Select e.EmployeeID, e.Name

From dw_Employee e, dw_WorksBox b, dw_WorksBox b2

Where b.Location != b2.Location AND e.EmployeeID = b.EmployeeID AND

b.EmployeeID = b2.EmployeeID AND b.BoxID = b2.BoxID;
EMPLOYEEID NAME

---------- --------------------

      1261 Bryant D. Dickson

      
      1261 Bryant D. Dickson
4.
Select b.BoxID

From dw_Box b, dw_ShoeBox s

Where b.BoxID = s.BoxID AND Qty <= 2;
5.

Select o.OrderID, o.ShoeID, o.Name

From dw_Order o, dw_ShoeBox s, dw_WorksBox b

Where o.ShoeID = s.ShoeID AND b.BoxID = s.BoxID AND b.Location = NULL;
6.

Select b.BoxID

From dw_Box b, dw_ShoeBox sb, dw_Shoe s

Where b.BoxID = sb.BoxID AND sb.ShoeID = s.ShoeID AND s.AgeGroup = 'Mens';
7.

Select b.BoxID

From dw_Box b, dw_WorksBox wb, dw_Employee e

Where b.BoxID = wb.BoxID AND wb.EmployeeID = e.EmployeeID AND e.Name =

'Bryan D. Dickson';
8.

Select s.ShoeID, s.Name

From dw_Shoe s, dw_ShoeBox sb, dw_Box b

Where s.ShoeID = sb.ShoeID AND sb.BoxID = b.BoxID AND b.Location = NULL;
9.

Select e.EmployeeID, e.Name

From dw_Employee e, dw_TimeCard t, dw_WorksBox wb, dw_ShoeBox sb, dw_Shoes

Where e.EmployeeID = t.EmployeeID AND e.EmployeeID = wb.EmployeeID AND

t.Hours < 48 AND wb.BoxID = sb.BoxID AND s.ShoeID = sb.ShoeID AND

s.AgeGroup = 'Women';
10.

Select e.EmployeeID, e.Name

From dw_Employee e, dw_WorksBox wb, dw_ShoeBox sb, dw_Shoe s

Where e.EmployeeID = wb.EmployeeID AND wb.BoxID = sb.BoxID AND sb.ShoeID =

s.ShoeID AND wb.Time > 120000421020 AND s.AgeGroup = 'Mens';
Phase 4: Stored Sub-programs

Stored Procedures descriptions

The common components of PL/SQL and MS Trans-SQL is that they can have functions, procedures, and packages, since both of their purposes are in scripting.  The purpose of a stored subprogram is that is it faster to get the data that is needed from the table through means of a program without having to individually change things in the table manually.  This is important for things like update and delete since all that is needed is to call the subprogram and it will make it easier to do those things.  And it is just faster than having to do front-end to DBMS server.  Another major importance is that it is reusable so it isn’t necessary to have to write it many times over and it saves it into the database in a similar way as a table.

The program structure is the program creation and name, the variables, then the Statements.  
The control statements are in the format of IF <condition> THEN <code> ELSE <code> END IF; which is in much the same way as a c type programming language.  
For cursor it starts with DECLARE then has variables declared, then CURSOR <cursorname> IS SELECT<the statement>  BEGIN LOOP statement with commands on the cursor variable and ends with END LOOP then END;/.


A stored procedure is a program that is used to make it easier to run select, update, delete, and create statements among other things which would take longer to write out each line individually.  For stored procedures, the format is as CREATE OR REPLACE PROCEDURE [name of procedure] (variable name In/Out) AS BEGIN [SQL Statements] END (name of procedure); /.

A package is a set of procedures and functions where it will open all at the same time in much the same way as a library in a programming language.  The package starts with CREATE OR REPLACE PACKAGE package name AS PROCEDURE name FUNCTION name and can also have things such as CURSOR then END packagename.  Then it has CREATE OR REPLACE PACKAGE BODY packagename (same as above) AS then body of the package with procedure and function statements.


A trigger activates when what it was set to watch happens, such as updating a table, it will activate at that time and do something whether it is to output information or to store the information from the NEW and OLD command into another table or to just output the information to a text file.  It is good for keeping logs of the database to see what has been updated and that makes it easier in case something goes wrong and it can be fixed.  The trigger starts with CREATE OR REPLACE TRIGGER trigger_name

BEFORE OR AFTER DELETE OR UPDATE OR INSERT ON tablename


FOR EACH ROW


DECLARE then declares variables


BEGIN 



Statements;


END;

/.

Oracle Sub-Programs
-This is used to insert into the Employee Table.

Stored Procedures

CREATE OR REPLACE PROCEDURE dw_sp_insert_Employee

(

        EMPID NUMBER,

        SN NUMBER,

        NA NUMBER,

        AD NUMBER,

        BD NUMBER,

        POS NUMBER

)

AS

BEGIN

        INSERT INTO dw_Employee (EMPLOYEEID, SSN, NAME, ADDRESS, BDATE, POSITION)

        values (EMPID, SN, NA, AD, BD, POS);

END dw_sp_insert_Employee;

/
-This is the delete stored procedure, it needs to delete the selected EmployeeID from the previous tables that uses it as a foreign key before deleting it from the Employee table.  So this removes it from the dw_TimeCard table and the dw_WorksBox before removing it from dw_Employee table.
CREATE OR REPLACE PROCEDURE dw_sp_delete_Employee

(

        deleID IN NUMBER

)

AS

BEGIN

        DELETE FROM dw_TimeCard

        WHERE EmployeeID = deleID;

        DELETE FROM dw_WorksBox

        WHERE EmployeeID = deleID;

        DELETE FROM dw_Employee

        WHERE EmployeeID = deleID;

END dw_sp_delete_Employee;

/
Tried to get the values of new and old into a string, however didn’t know how to convert a line of columns into a string.  The new and old should hold the values in new.<tablename> and old.<tablename> however I couldn’t figure out how to convert it all into a string.
CREATE OR REPLACE TRIGGER dw_tr_update_Employee

        BEFORE UPDATE

        ON dw_Employee

        REFERENCING OLD AS old NEW as new

        FOR EACH ROW

        BEGIN

                INSERT INTO dw_logTable VALUES (:old.EmployeeName, :new.EmployeeName)

        END;

/


