L

RECORD COMPANY
DATABASE

CS342 Database Project — Fall 2015

Mark Armendariz and Andrew Lane

Table of Contents

Phase 1: Fact-Finding, Information Gathering, and Conceptual Database DeSigN....ccceeeerrerreerrnerenerenrencranens 4
1.1 Fact-Finding Technigues and Information Gatheringcccceeeeeeeiieiiiiiiiennnesieienineeennnensesessneeennns 4
00t A (e Y oo [To dTo T o £ 3N =10 €T o1 Y PSPPI 4
1.1.2 Description of Fact-FINdinNg TECANIGQUESuiiiiiiiieeccee et 4
1.1.3 Database DESIEN FOCUS ..iicuuieiieitieeeeeiteeeeettee e eetteeeeetee e e esateeeeesabaeeeesnbaeeeesnsaeesesnsaeeeennsaeeasnnsenas 6
1.1.4 Entity and Relationship Set DeSCriPtiON . .uiiiiieiiee e cciiee ettt sree e e svee e e 6
1.2 Conceptual Database DESIGNcceverrriiiiiiiiiiiiiiiiiiiiisiissssssss s s s s s s s s s s s s s s s s s s 8
1.2.1 ENtity SEt DESCIIPTION eiiiiiiiiiiieiiiiiiieiiieieteteteteteteteeeteteeeteteteteeeteteeeeeeeeeeeeeeeeeteeeerereseeeeeseresererenes 8
1.2.2 Relationship Set DESCIIPTION...ccuiiieiccieee et e eettee e eecte e e et e e e ette e e e e bre e e e esbteeeeebeeeeeeseeeesanses 20
O T S 0= ol Yo I o o 4 Y Y=Y PSSPt 22
A e N D - = =10 o PP P PPPPPPPPPPPPPRt 23
Phase 2: From E-R Model to Relational MOdel......cciiiiceiiiuemreeeiiiiiiiiiineneeeniinicsneeseesesssssesssseesssssnnns 24
2.1 Conceptual Database and Logical Databaseceueieiiiiinirnnneniiiiniiiiinmnniiiiniiiieemmes 24
2.1.1 E-R Model and Relational Modeloc.eieeiiiiierieeeeere ettt 24
2.1.2 Comparison of TWo Different Models.......ucuuieei ettt 25
2.2 Conversion from E-R Model to a Relational Databaseccvceeeeeiiiiiisssinenneeniinicsssieneeeeensnssnnns 26
2.2.1 Converting Entity Types tO RelatiONS .oc.uuiiiiiiieeeciiiee ettt esree e vee e s nree e e aree e s 26
2.2.2 Converting Relationship Types t0 ReIatioNS.....eeeicieieeiiiee ettt et 28
2.2.3 Database CONSIIAINTS .eeiueereieiieieete ettt sttt et e bt e shee st e st e b e bt e sbeesaeesabeenseebeesbeesaeenas 31
2.3 Convert Record Company E-R Model to a Relational Databasecc.ccerveeeeciiieeeciiieeecciireeecceneeee. 35
2.3.1 Relation SChEME ciuiiiiieiieet ettt sttt s e et 35
2.3.2 Sample Data of REIGLION .uiiiiciiiie ettt e e e e bae e et a e e e e areeas 42
2.4 Sample Queries for Databasecuueeeeeriieisiiiiirnnniiiiiiiiiiimmmmiiiiiirsssmses 52
B O B B 1T P I o @ U 1T =TSSR 53
2.4.2 Relational Algebra EXPreSSIONS wiuuiiiiecireeeeitiee e ettt e ssree e e sireeessbeeeesabaeeesnbaeeesssbeeeesnnsenas 54
2.4.3 Tuple Relational Calculus EXPrESSIONS ...uueiiiciieeeeiiieeeeiiieeeesireeeesteeeeseveeeessnseeesesaseeesssasenns 56
2.3.3 Domain Relational Calculus EXPreSSiONS e iieeeecieeeeciteeeesireeeesreeeessreeeessnreeesesabreessnaeeeas 57
Phase 3: Implementation of Relational Database e uueuememumumununnnnnnnninnnnnnnasasasasasasasaaaaaaes 60
3.1 Relation NOrmMalization ..cuue i 60
3101 ANOMAHES ettt st sttt saee e a e e b e e nreesree e 60
3.1.2 NOTMAHZATION teriteiieeteete ettt ettt st sttt b e beesae e s e ean e et e e sneennee e 61

3.1.3 Relation NOIMaliZation .ot e et e e e e et et e e e e s e e s esab s s e eesesssranaeaaees 63

T 0] 11 64
0 R Y -1 o I e oTo T U T U TP P TP 64
I O 7 Tol [Yol Y=Y o g = T O o =T o1 5P 64

3.3 Relation SChema and Data...ccciiiiiiiiiiiiiiiiiiiiiirninnnrnnsnrnsnsnsssssssssss s s s s s s s s s s s s s s 67
2R TR0 R 6o o 1 = Yot PP PP PP PPPTOPPN 67
3.3.2 ATHIST teutetiet ettt ettt et et b e a e te bt et e bt ea e e bt eae e besbe et e ebeeheebesaeenes 67
I TE T 0o o g o Yo LY=o [O 1 PP 68
T IR B (VT 0 01 o 1= TP PR PP PPPRPUPRTPPONt 69
SIS TR T AN o U o' RSP UPR 70
SIS T ST Yo] Lo HN I T o TN ={ o TS RSP 71
T A I - [0151 ot o o I P PP PP O PSPPI 72
- T = TU 1Y T T USRS R TP 72
e B Yo] o - S U TSP R PR 73
IR 701 O I U T 1o TSP 75
I I A1V 1 (< G T T T T T U PP T PP PP PP 76

3.4 SOL QUUETTIES treeenreirernnniirernnniiriennsiirirnsiirienssiiriesssiistesssisstssssisstesssssstesssssstssssssssssssssssenssssssennss 77

Phase 4: Stored Procedures, Packages, and TrHZEETSuuuuererereresumunemumesmsmmemssssusesesesesssesssesesssesssasasasanees. 83

4.7 OFACIE PL/SOL ererurrerrernnnerrernssersersssereessssessessssesssssssssssssssssesssssssesssssssesssssssesssssssessssassessssassens 83
411 WRATIS PL/SQL? ettt ettt ettt ettt b s bbbttt nesbesaesbentens 83
41,2 PL/SQL SYNTAX trettrertriirieireeireesteeiteeseeeseesseesseesseessaesssessseesessseessasssessssssssesseessesssesssessssessesns 84

4.2 MS SQL Server and MySQL Stored ProCedureS....ciiuereeuesisisiiinemnnmssssisiiimessssssssissiimmsssssssssnnn 87
4.2.1 Microsoft SQL Server and T-SQLceiieeieeiiereeriiesie ettt ettt beeeeesbeesbeesaee e 87
4.2.2 MYSQL SEIVEN ROUTINES.cciiiiiiiiiiiiiiieieieeiieieeseeesessesesesesessssesesseresenes 89

4.3 PL/SQL Subprogram IMplementationS.......eeeeeeeeeeesesesesesesssanans 90
TRt R S 0 Yol <o [0 =L PP OTS PP 90
T I g 4= =1 PN 94

Phase 5: GraphiCal USEr INTEITACE tieuiiieeiiireiereeiiitnerineieienieteaerensistnseressserssssssssesensssessssessssssnssssnsessnsases 97

5. USEr GrOUPS ctrusteestnesrussressressansrassrsssrssssssssssssssrsssrsssrsssssssasssassrsssssssssssssssasssassssssrsssasssasssasssns 97
5.1.1 EXECULIVE ASSISTANTS .eeiiiiiiiiiiiiiiiiiiiic it 97
TR O N o 1] KPP PSR 98

5.2 GUI Design and Development iN JaVa ..iiceiiriiiiiiiiiiiiiiiiiiinniinnnennnssssssssesssssssssssssssssssssssssssssssens 99

5.3 M Or FEATUIS .. cteeeiieuriiiniiieiiiiesiieniieniiesssiessisrnessrssssrsnssresssrssssssnssssssssrsssssesssssnssssnssssnssssas 101

5.3.1 Connecting to the Oracle Databasecccueiiiciieiiieiiie et sbee e 101

5.3.2 INSErting iNtO Databas..uuii i ciieeeieiiieeceitee e ertee et e et e e et e e ssvee e s s e e s ssabee e s ssnbeeesenareeas 102
5.3.3 ROW Filtering FOr SEArChiNg .uuuei ettt et e e et e e e rr e e e e etae e e e 103
5.3.4 Assigning StUdIOS 10 AIDUMS .eeeeiiiiee ettt e e e rbee e e ebre e s e ebae e e enreeas 104
5.3.5 ASSIZNING WITTEIS 10 SONES eeeeeiieeeieeee e e e e e e e e e e e e e e e e e 106
I N I T A T=T = =Tl 2= o Yo Y £ PP 107
Lo O 11 {00 o 4T N 109

Phase 1: Fact-Finding, Information Gathering, and
Conceptual Database Design

1.1 Fact-Finding Technigues and Information Gathering

1.1.1 Introduction to Enterprise

The imaginary company our database will be created for is for a record company called
Armenlane Records. Record companies, also known as “Record Labels”, are companies that hire
musicians and artists by contract to record albums. These contracts have certain parameters,
such as having a contract that is for a specific number of albums. After the albums are recorded,
Armenlane Records releases the albums by selling them to major retailer distribution centers,
such as Wal-Mart, Target, or Kmart. The main type of music our company focuses on is rock
music and other similar types, or genres, of music. This company rents out a small number of
independently-owned recording studios for each album to be recorded at. Each song also has a

songwriter.

1.1.2 Description of Fact-Finding Techniques

For fact-finding, we used the internet and popular search websites in order for us to find
and use information for our project. To find more specific information on record companies, we
researched a few modern record companies, as well as legal information on contracts and the

music business as a whole.

We were able to get into contact with Asthmatic Kitty Records, which is a small

independent record company based in the United States. We emailed them for information on

data that is stored for their company. They weren’t that specific in the information they
provided, but they gave us the general idea of what data they store in their databases, such as

artist contract information, as well as album information.

We were also able to get into contact with a musician who has recorded music at actual
studios and he was able to give us more information on what information is stored, such as

information on songs and writers.

From all of our research, we discovered that the music business is a very complex
business. Every company’s database may be different but they are probably very complex due to

how complex the music business is, so for the purpose of this project, we will keep things simple.

Contracts can be very complicated, especially when it comes to financial information and
income from music sales. But upon researching, we found that contracts often involve terms
where an artist will have only a certain number of albums they can record under their current
contract. We also discovered that record companies don’t actually own recording studios

anymore, but rent independent ones for use.

We also used the basic, and common structure of artists creating albums, which all have
at least one song, with each song having a writer. Entities were easy to discover once we laid out

what a record company does and what each artist does.

The reports that would need to be generated are numerous, but we came to identify a
few important ones. For example, general artist and album information reports for all artists
hired by the company would need to be generated, as well as financial reports and studio usage

reports would be generated. To generate a report, the user will specify what items they would

like to see. For example, they could see all of the songs from a specific album, or view all the

album transactions that occurred during a specific period of time.

1.1.3 Database Design Focus

Record companies can be very complicated, especially when dealing with financial
information. So for this software, we decided to focus more on music part of the record
company. Rather than covering the entire business, we will only focus on the following: The
artist and their contract information, the album and their songs, studios and songwriters, as well

as transactions for selling albums.

Keeping the main focus on artists and their music allows us to keep the project simple.
For example, if we wanted to view information for an artist who is hired by contract by the
company, we would include information based only on their role in music-making. But by

including some financial information, we are able to make a more complete database.

1.1.4 Entity and Relationship Set Description

Our time in lecture helped us develop a more solid approach to how an entity should be
created. During the lab period, we watched a few groups present their ideas for their proposed
database. During each presentation, we discussed how each idea could possibly be improved, or
if there was in issue with the current model. Using this experience, we tried to improve our own

ideas and rough drafts of our entities.

So using the information we discovered from research, we decided to focus on the
following entities: Contracts, Artists, Members, Albums, Songs, Studios, Writers, Transactions,

and Buyers.

The Contract entity represent the conditions by which an Artist is hired by the record
company. The Artist entity represents the group or individual that is hired by the record
company under a contract with a certain number of albums as their terms. Each artist will have

at least one member in the Member entity.

For example, if a band, called The Beatles, is hired by the company, and the band has four
members, John, Paul, George, and Ringo, the Artist entity would contain an entry for The
Beatles, but the Member entity would contain four entries, one for each member of The Beatles.
Another example is if a single artist, called Bob Dylan, is hired by the company, then the Artist
entity would contain a record for Bob Dylan and the Member entity would also contain just one

entry for Bob Dylan.

Each Artist will have albums that they have recorded. Each of these Albums will have a
Studio where it was recorded. Each Album will be sold to major retailer distribution centers. Each
of these transactions will kept track of in the Transaction entity. Each album will also have a set

of songs, and each song will have a writer.

All of these entities combine to create a database of hired artists without getting too
complex for this quarter’s project. It is a very general database, containing general artist and

music information as well as some financial information.

1.2 Conceptual Database Design

1.2.1 Entity Set Description

Contract — Strong Entity

Our Record Company has hundreds of artists hired by

CONTRACT

contract to the record company, with each of these contracts

having their own terms and a date when the contract started and COI"ItI'ElCt_' D

album_terms
ded. So a Contract entit ired.
ended. So a Contract entity was require Start_date

end _date

Primary Key: contract_ID

Figure 1- Contract Entity
Attributes:
e contract_ID: Internal ID for organizing artist contracts

o String; no nulls; unique; single-valued and simple.

e album_term: Number of albums artist has to record for their contract

o int; nulls not allowed; not unique; single-valued and simple.

e start_date: Date artist signed contract

o date; no nulls; not unique; single-valued and simple.

e end_date: Date artist contract ended

o date; nulls allowed; not unique; single-valued and simple.

Artist — Strong Entity

Our Record Company has hundreds of artists hired by

ARTIST

contract to the record company. So we needed an Artist Entity

L artist_ID
to represent these artists in our database. .
artist name
Primary Key: artist_ID genre

Attributes: Figure 2- Artist Entity
e artist_ID: Internal ID for artist information

o string; no nulls; unique; single-valued and simple.

e artist_name : Name used by artist

o string with any value; no nulls, not unique; single-valued and simple.

e genre: Style of music classification

o string with any value; nulls allowed; not unique; single-valued and simple.

Member — Strong Entity

Artists may have more than one member as part of their group, or
Y g Brotp MEMBER
they may just be a single person as the only member of the artist. For this
55N
reason, a Member Entity is required. fname
Iname
Primary Key: ssn phone
addr
_ city
Attributes: state
e ssn: - Social Security Number unique to each person zip
o String with length of 9 characters; no nulls; unique. instrument
start_date
end_date
e fname : First name
o string with any value; no nulls; not unique; single-valued Figure 3 - Member Entity

and simple.

e |name: Last name

o string with any value; no nulls; not unique.

e phone: Phone number

o string with length of 10 chars; nulls allowed; not unique; single-valued and simple.

e addr: Street address

o string of length 40 chars; nulls not allowed; not unique.

e city: Specific city in U.S. State

o string of length 40 chars; nulls not allowed; not unique.

e state: State located in the U.S.

10

o string; nulls not allowed; not unique; single-valued and simple.

zip: Valid U.S. Zip Code

o string: nulls not allowed; not unique; single-valued and simple.

instrument: Instrument that member plays

o string; null not allowed; not unique; single-valued and simple.

start_date: date member’s contract began

o Date type; null not allowed; not unique; single-valued and simple.

end_date: date member’s contract ended

o Date type that is after starting date; nulls allowed; not unique. Single-valued and
simple.

11

Album — Strong Entity

Each Artist will have a certain amount of Albums. So an
Albums entity is required in order to store general information for

each album recorded by the group.

Primary Key: album_ID

Attributes:

e album_ID: Unique album ID number

o string; no nulls; unique; single-valued and simple.

e album_name : Name of album

o string, no nulls, not unique; single-valued and simple.

e Date_released: Date album released

o date; no nulls; no unique; single-valued and simple

e Unit_price: Price of album sold in stores

ALBUM

album_ID

album_name
date_released
unit_price

Figure 4 - Album Entity

o float; nulls allowed; not unique; single-valued and simple.

12

Song - Strong Entity

Every Alboum will have a set of songs listed in a particular
SONG
order with a certain length. So for these reasons, a Song entity is
song_ID
required in order to store each of these songs that are associated trar::k_no
with a particular album released by a particular artist. song_name
song_length
Primary Key: song_ID

Figure 5 - Song Entity
Attributes:

song_|ID: - Internal ID for song organization

o string; no nulls; unique; single-valued and simple.

track_no: Track number of song on album

o int; nulls allowed; not unique; single-valued and simple.

e song_name : Name of the song

o string; no nulls; not unique; single-valued and simple.

song_length: Length of song in time

o time; nulls allowed; not unique; single-valued and simple.

13

Studio — Strong Entity

This recording company rents out independently-owned
B company g Y STUDIO
studios for artists to use. In order to keep track of where each song -
studio_ID
was recorded and how much money was spent in recording this a studio_name
. . o phone
particular albums or on an artist, a Studio entity is required to hold addr
information for each studio. city
state
Primary Key: studio_ID ZIp
open_date
Attributes: close_date
hrly_cost
e studio_ID: - Internal ID for contract organization Figure 6 - Studio Entity

o string; no nulls; unique; single-valued and simple.

e studio_name: Name of studio

o string, no nulls, not unique; single-valued and simple.

e phone: contact number of studio

o string; nulls allowed; not unique; single-valued and simple.

e addr: street address where studio is located

o string; nulls allowed; not unique; single-valued and simple.

e city: city where studio is located

o string; nulls not allowed; not unique; single-valued and simple.

14

state: Specific state where studio is located

o string; nulls not allowed; not unique; single-valued and simple.

zip: zip code of studio

o string; nulls not allowed; not unique; single-valued and simple.

open_date: Date studio opened

o date; no nulls; not unique; single-valued and simple.

close_date: Date studio closed

o date that takes place after open_date; nulls allowed; not unique; single-valued
and simple.

hrly_cost: Hourly cost to rent studio for recording

o float; nulls not allowed; not unique; single-valued and simple.

15

Writer — Strong Entity

The recording company will contract out writers to either
compose lyrics or tracks for the artists to sing or use. A writer can
work on many different songs and is not limited to the amount he

can work on unless specified in the contract.

Primary Key: writer_ID

Attributes:

e writer_ID: Internal ID for contracted writer

o string; no nulls; unique; single-valued and simple.

e fname: Name of writer

o string, no nulls, not unique; single-valued and simple.

e |name: Last name of writer

WRITER

writer_ID
fname
Iname
ssn
phone
addr

city
state

Zip
start_date
end _date

Figure 7 - Writer Entity

o string; nulls allowed; not unique; single-valued and simple.

e ssn: Social security number

o string; nulls allowed; not unique; single-valued and simple.

o

e addr: Street address of writer

o string; nulls allowed; not unique; single-valued and simple.

e phone: Phone number of writer

o string; nulls allowed; not unique; single-valued and simple.

16

city: City where writer lives

o string; nulls not allowed; not unique; single-valued and simple.

state: Specific state where writer lives

o string; nulls not allowed; not unique; single-valued and simple.

zip: zip code of where writer lives

o string; nulls not allowed; not unique; single-valued and simple.

start_date: Date writer signed contract

o date; no nulls; not unique; single-valued and simple.

end_date: Date writer contract ended

o date that takes place after start_date nulls allowed; not unique; single-valued and

simple.

17

Transaction — Strong Entity

Albums will be sold to retail distribution centers through
transactions, so a transaction entity is required to hold the date

and unique ID for each transaction.

Primary Key: transaction_ID

Attributes:

e transaction_ID: Internal ID for transactions

o string; no nulls; unique; single-valued and simple.

e Date: Date when batch of albums was purchased

TRANSACTION

transaction_ID
date

Figure 8- Transaction Entity

o date; nulls allowed; not unique; single-valued and simple.

18

Buyer — Strong Entity

Information for retail distribution centers is required to be
stored for keeping transaction information. So a buyer entity is

required.

Primary Key: buyer_ID

Attributes:

buyer_ID: Unique buyer ID

o string; no nulls; unique; single-valued and simple.

e buyer _name: Name of major buyer

o string, no nulls, not unique; single-valued and simple.

e phone: phone number

BUYER

buyer_ID
buyer_name
phone

addr

city

state

Zip

Figure 9- Buyer Entity

o string; nulls allowed; not unique; single-valued and simple.

e city: City where buyer is located

o string; nulls not allowed; not unique; single-valued and simple.

e state: Specific U.S. state

o string; nulls not allowed; not unique; single-valued and simple.

e zip:zip code

o string; nulls not allowed; not unique; single-valued and simple.

19

1.2.2 Relationship Set Description

Contract hires Artists
This relationship links each artist to the contract by which they were hired. Each artist
has one contract, and each contract has one artist, so it is a One to One relationship. This

relationship utilizes the Contract and Artist entities.

Artist is composed of Members

This relationship links each artist to the members to make up that artist. Single artists
will have only member in the member entity, and bands will have more than one member in the
member entity.

Using the same example from earlier, if the band The Beatles were hired, there would
be a single entry in the Artist entity for “The Beatles”, but there would be four entries for the
band members John, Paul, George, and Ringo, in the Member entity.

However, this relationship is a Many to Many relationship with any number of artists
having any number of members and any number of members have any number artists. So a
member can be a part of more than one group or single artist. This relationship utilizes the Artist

and Member entities.

Artist records Albums
This relationship links each artist to all the albums they have recorded. It is a One to

Many relationship with one artist having any number of albums and any number of albums

20

having one artist. This relationship utilizes the Artist and Aloum entities.

Album is composed of Songs
This relationship links each album recorded to all of the songs that are on that album. It
is a One to Many relationship with one alboum have any number of songs and any number of

songs having one album. This relationship utilizes the Album and Song entities.

Albums sold through Transactions

This relationship links each album to the transactions the recording company makes in
order to sell an album to a major retailer. It is a Many to Many relationship with any number of
albums having any number of transactions, and any number of transactions having any number

of albums. This relationship utilizes the Aloum and Transaction entities.

Transactions purchased by Buyer

This relationship links each transaction to the buyer who purchased the batch of
albums. It is a Many to One relationship, with any number of transactions being purchased by a
single buyer, and one buyer having any number of transactions. This relationship utilizes the

Transaction and Buyer entities.

Albums recorded at Studios
This relationship links each album to the recording studio it was recorded at. It is a

Many to One relationship with any number of albums being recorded at one studio and one

21

studio having any number of albums. This relationship utilizes the Aloum and Studio entities.

Songs written by Writers
This relationship links each song to the writer who wrote the song. It is a Many to One
relationship with any number of songs written by one writer and one writer writing any number

of songs. This relationship utilizes the Song and Writer entities.
1.2.3 Related Entity Set

Generalization is when entities are grouped together to show a more general view. With
generalization, we bring together multiple entities into one entity to create a larger entity based

on their similar traits and characteristics.

On the other hand, specialization is the opposite of generalization. With specialization,
entities are divided into sub classes based on their traits. You can take an entity such as artist,

and split it into subclasses like Band or Solo. These are both very similar to the entity Artist.

We thought about possibly keeping Bands and Solo artists separate with two distinct
entities, but they have very similar attributes. So we decided to generalize them into a single
entity called Artist. What will eventually separate the two separate ideas is the number of
members this entity is related to in the Member entity. An artist with one entry in the member
entity will be a solo artist, and an artist with more than one entry in the member entity will be

considered a group or band.

22

1.2.4 E-R Diagram

An E-R model, or entity-relationship model, is a visualization of entities and how they are
related to other entities. This includes the relationships between entities and their cardinalities.

This model allows for entities to be organized in meaningful way.

Referring back to all previous information and development, we created the following E-R
Model for this database. It is a very basic and high level understanding of what our company

would require for this database. This is tentative, as this design may change as we progress with

this project. But, we can now use this model to create a relational database.

— BUYER
@at‘:hfunits ~_ N TRANSACTION buyer_ID
CONTRACT — N 1 -

- buyer_name
contract ID |:<’/SOLD7THRO®— transaction_ID —@RCHASED,BY\/‘— phone
album_terms \ ~ date "‘\/ a;ldr
start_date N city
end_date state

zip
1 —
\ Y STUDIO
HIRES P m D studio_ID
; - album— studio_name
album_name
. - h
date_released N x_ zdg:e
ARTIST unit_price < RECORDED_AT > city

~ state
artist_ID \ \:/ zip
artist_name \\end_date/‘ 1 1 G:wor;;ci\' open_date
genre . B B - ~~ . - }/ close_date

< COMPOSED_OF > — hrly_cost
MEMBER B
N WRITER
?EI;me writer_ID
N Iname SONG If”ame
N hone rame
ped ~N gddr song_ID N1 fsn
<COMPOSED_OE>—— 0 track_no ——_WRITTEN_BY >—{phone
- e ctate song_name \“\ _— addr
- 2ip song_length - city
instrument sFate
start_date o
end date start_date
- end_date
1 create

Figure 10- E-R Model of Record Company Database

23

Phase 2: From E-R Model to Relational Model

2.1 Conceptual Database and Logical Database

2.1.1 E-R Model and Relational Model

E-R Model

The Entity-Relationship model was created by Peter Chen, a Computer Science and
Applied Mathematics graduate from Harvard. Chen created the model to create a formal
approach on data modeling in order to develop a database.

The E-R model has a few major features that assist in the development and visualization
process of creating a database. E-R modeling allows the developer to create a graphical
representation of how their database will look. Creating Entities which hold the place of real-life
conceptual or physical objects with independent existence, a data model can be created by
adding attributes to the Entity in order to fully describe it, and then by linking Entities together
through relationships with real-world meaning. For example, if entities EMPLOYEE and PROJECT
are created, they may be linked together by EMPLOYEE WORKS_ON PROJECT. In this way, a data

model can be created which is a vital step towards developing a database.

Relational Model

The Relational Model, created by IBM researcher Ted Codd in 1970, is a data model
rooted in set theory and first-order predicate logic that is widely used in developing modern
database systems. Organized into tables, or more formally called “relations”, the two main

methods of representation are through the tuple (row) and by attribute (column). Through the

24

use of unigue primary keys, data requests, or queries, can be used to for extracting data from
the database. Through the use of what are called foreign keys, relations can be linked in a similar
fashion to the way the E-R model links entities together, allowing for a simplistic means of

storing data, and yet a powerful means of organizing data for retrieval.
2.1.2 Comparison of Two Different Models

Differences and Similarities

The E-R and Relational Model both help to visualize and conceptualize what the actual
database design will eventually be. Developers use the E-R model to visualize the main
conceptual or physical entities of their database, as well as the attributes for each entity, and
each relationship between other entities. The Relational Model is used to assist the developer to
finalize their proposed database layout, as well as to create relations from proposed entities and
link them together through foreign keys or relation tables, but the relational model could be
difficult to create without some form of visual aid. So the E-R model helps with the initial design,
but the two models are so similar that the E-R model can be easily converted to the Relational

Model for physical database development using a DBMS, such as Oracle.

Advantages and Disadvantages

An advantage of using the E-R model over the relational model is the visualization aspect.
In the E-R model, entities, attributes, and relationships can be easily visualized in a diagram using
shapes that are linked together. In the relational model, relations are represented as tables,

which aren’t as visually appealing and are harder to work with when designing a database.

25

Another advantage the E-R Model has over the Relational Model is the fact that the E-R
Model fully supports multi-valued and composite attributes while the Relational Model only
supports single-valued and simple attributes. This can be problematic when real-world objects
work better with multi-valued and composite attributes, such as when a car has more than one
color. Conversion techniques can take care of this, but it is certainly an advantage over the
Relational Model.

The main disadvantage of the E-R Model is that there does not exists a query language
for that model. The Relational Model has the advantage of the SQL language, used for retrieving

data, making the Relational Model a much more usable model.

2.2 Conversion from E-R Model to a Relational Database

2.2.1 Converting Entity Types to Relations

Strong Entity Types

When converting strong entity types to relations in the Relational Model, you must
create a Relation that contains all of the simple attributes that are a part of the entity being
converted. The relational model only supports simple attributes, and not composite or multi-
valued attributes. One of the key attributes from the entity must also be selected as the primary

key of the newly created relation.

Weak Entity Types
When converting weak entity types to relations in the Relational Model, a relation can be

created using all of the simple attributes of the weak entity being converted. But because this is

26

a weak entity, which does not have a key of its own, a foreign key must be created from the
primary key of the parent entity, so that the relations can be properly mapped for the relational

model.

Simple and Composite Attributes

Only simple attributes are supported by the Relational Model. So for simple attributes in
the E-R Model, simply include all simple attributes as simple attributes of their respective
relation.

Composite attributes are not supported by the Relational Model. So for converting E-R
Model composite attributes, you will break the composite attribute into a set of simple
attributes that can easily be used in their respective relation. You can also create a separate

relation for composite attributes instead of splitting them into simple attributes.

Single-valued and Multi-valued Attributes

Only single-valued attributes are supported by the Relational Model. So for single-valued
attributes in the E-R Model, include them as simple, single-valued attributes in their respective
relation.

Multi-valued attributes are not supported by the Relational Model. So for each multi-
valued attribute, you must create a new relation that will hold the values for that multi-valued

attribute. This new relation will have a foreign key that will relate this table to its parent relation

27

2.2.2 Converting Relationship Types to Relations

One to One Relationship
There are three options available for converting binary One to One relationship types.
Given entities T and S who are in a One to One Relationship:
1. The first option is to include a foreign key in of the relations that references the other

relation. Total participation of one entity in the other is very helpful in this case.

2. The second option is actually merge the two entities into one relation. The total

participation from both entities is required for this to work.

3. The last option for binary One to One relationships is to create a cross-reference relation.
Given entities T and S that are in a One to One relationship, create a relation from the
relationship between T and S. The primary key of this relation R will be a combination of
the primary keys of T and S. Any simple attributes from the relationship will be included

as attributes of this new relation R.

One to Many Relationship
For converting binary One to Many Relationship types there are two options available.
Given entities T and S who are in a One to Many Relationship:
1. If Sis on the N-side of the relationship, include the primary key of T in the S relation as a
foreign key. All simple attributes of the relationship are included as attributes of the S

relation.

28

2. The last option for binary One to Many relationships is to create a cross-reference
relation. Given entities T and S that are in a One to Many relationship, create a relation
from the relationship between T and S. The primary key of this relation R will be a
combination of the primary keys of T and S. Any simple attributes from the relationship

will be included as attributes of this new relation R.

Many to Many Relationship
For converting binary Many to Many relationship types, there is only one option available.
Given entities T and S who are in a Many to Many relationship:
1. The last option for binary Many to Many relationships is to create a cross-reference
relation. Create a relation from the relationship between T and S. The primary key of this
relation R will be a combination of the primary keys of T and S. Any simple attributes

from the relationship will be included as attributes of this new relation R.

IS-A and HAS-A Relationships

IS A Relationships are specialization relationships. Specialization is the process of creating a
set of subclasses from a certain superclass entity type. The resulting set of subclasses that forms
a specialization is defined on the basis of some defining characteristic of the entities within the
superclass.

This is the opposite of the abstraction process which we disregard the differences among
several entity types and then identify their like features. Then, we can generalize them into a

single superclass. This results in the original entity types being special subclasses. The term

29

generalization is used to refer to the process of defining a generalized entity type from the given
entity types.
For converting an E-R specialization or generalization relationship to the Relational

Model, there are four options:

1. Create relations for all superclasses and subclasses. Include a foreign key for each subclass

relations to link them to their respective superclass. This works for any specialization.

2. Create relations only for the subclasses. This only works for specialization, and when
the subclasses have total participation in the relationship.

3. Create a single relation for all super and subclasses, but the relation will contain a
discrimination attribute. This attribute will indicate what subclass each tuple belongs to,
if it indeed participates in the relationship.

4. Create a single relation with a set of type attributes that will indicate which subclass

each tuple belongs to. This works for overlapping subclasses in specialization.

Recursive Relationship

A recursive relationship is when an entity is in a relationship with itself. To convert these
relationships to the Relational Model, we can create a foreign key that will reference the primary
key of its own relation. This way it can be in a relationship with itself.

For example, say in a company, there are Employees and Managers, but in the database
there is only an Employee relation that contains both lower-level employees and upper-

management employees. We can look at an employee tuple, and if the employee is a manager,

30

his primary key will show up as the foreign key in another employee tuple who is a lower-level

employee. So it is in a recursive relationship.

N-ary Relationships

In an n-ary relation, you have more than 2 entities participating in a relationship. So for
converting these relationships to the Relational Model, you must create a cross-reference table,
which will contain an n number of foreign keys to relate each of the relations together. You

would also include any and all simple and single-valued attributes.

Union Type Relationship

In the E-R Model, union type relationships, or categories, are when you create a subclass
from the union of two or more entity types. These subclasses are otherwise known as a union
type or a category.

For converting these relationships to the Relational Model, you must create a new
relation which will only hold a surrogate key. A surrogate key is a new unique attribute created
to uniquely identify members of the union relationship. This new key will then be added as a

foreign key to each of the participating super-classes

2.2.3 Database Constraints

Databases must obey certain constraints that are either inherent in the relational schema
itself, or are from business rules. Constraints are directly related to the database schema, or the
method of organization. Constraints are related to how the data will be handled when deleting,

inserting, or updating, and to ensure the integrity of the data in the database.

31

Domain Constraints

Domain constraints specify that all of the values within a tuple must be within the
specified domain for each attribute, such as their datatype or enumerated datatype. For
example, if the attribute’s domain is an integer, than that attribute’s value for all tuples must be
an integer. Or if the domain is an enumerated datatype, the attribute’s value for all tuples must
exist within that enumerated set. When updating or inserting, the DBMS will not allow you to

add a value to an attribute that does not exist in the domain of the attribute.

Key Constraints

Because the Relational Model is based on set theory, which by definition states that all
elements in a set must be unique, there must be a way to distinguish tuples from each other for
data retrieval. Through the use of primary and candidate keys, we can use these unique values to
identify unique records in a database. However, a relation can have multiple unique keys, or
candidate keys. One must be chosen as the primary key for this purpose. When updating or

inserting, the DBMS will not allow you to create a key that is not unique.

NULL Constraints
Another constraint is when an attribute is not allowed to be null, such as for a first name
or last name of a student. For updating or inserting, if the attribute is specified to be non-null,

the DBMS will not allow you to insert null data.

32

Entity Integrity Constraints

The entity integrity constraint is the constraint where no primary key can be null. A
primary key is used to identify unique records in a database, and each table is only allotted one
primary key, so constraining the primary key to always being unique and not NULL is important.
With joins, primary keys can also be used to relate tables together. For inserting or updating, the

DBMS will not allow you to have a null primary key.

Referential Integrity Constraints

Referential Integrity Constraint is a constraint where a foreign key in a relation must
reference an existing tuple from the relation it is referencing at any given time.

This constraint is important for database operations. For example, the delete operation
can only be done if certain requirements are met. In our database, we could not delete an artist
from the Artist relation without also deleting any and all albums and songs because this would
violate the referential integrity constraint. For inserting or updating data in the database, you
can’t make foreign keys that reference tuples in other relations that do not currently exist. This

would also violate the referential integrity constraint.

Check Constraint
Check constraints are constraints that are defined upon creating a database table using
SQL. Check constraints are used to ensure the integrity of data that is being updated or inserted

by making sure that a specific condition is met. If the value being inserted is not null, then the

33

check constraint will evaluate to TRUE or FALSE. If the value being inserted is null, then the check
constraint will evaluate to UNKNOWN, but it will not violate the constraint.

An example of a check constraint would be to say that the price of an item is greater than
$0.00. So that when data is entered or updated, no item in the database can have a price of less
than or equal to $0.00. So, when inserting or updating data, if the data evaluates the check

constraint to false, the DBMS will not allow you to insert that data.

Business Rules

Business rules are policies that businesses follow that must also apply to the data in their
databases. For example, if a company’s policy states that an accountant can’t have a relative
who works as a cashier, this rule also needs to be enforced in the database through either
triggers or the application software.

These rules essentially maintain proper relationships between entities as well as ensure
the integrity of the data. For example, for our database we have an entity called Artist. Every
Artist has Albums, but no Album can exist without an Artist. Below are several more examples
specific to our database.

1. No Member can exist in the database without being a part of at least one Artist.

2. No Artist can exist in the database without having a Contract in the database.

3. No Song can exist in the database without having an Album in the database.

4. No Album can exist in the database without having an Artist in the database.

34

5. No Transaction can exist without a Buyer, and no Transaction can exist without having at

least one Album being sold in that Transaction.

2.3 Convert Record Company E-R Model to a Relational
Database

2.3.1 Relation Schema

Using all previously mentioned conversion techniques from E-R Model to Relational
Database, we are able to convert our entities to relations. Each of our Entities in our E-R Model
we created were strong entities, so we created relations for each of them with all simple
attributes.

All of the relationships we created between entities were either 1:N, N:1, or N:M. So for
all of our 1:N or N:1 relationships, we used foreign keys for the conversion to the relational
model. For the two N:M relationships we have, we used the method of creating a relation, where
each tuple is an instance of a relationship between two relations.

The following tables are representations of our relation schemas for our relational

database design.

35

Keys

PRIMARY

FOREIGN

Contract

For converting the strong entity Contract, we created a relation that contains all of the

simple attributes from the Contract entity. The primary key is contract_ID.

Attribute Domain Description

Contract_ID String Unique contract ID
Number of albums under
Album_terms Int
- contract
Start_date Date Date contract started
End_date Date Date contract ends
Artist

For converting the strong entity Artist, we created a relation that contains all of the

simple attributes from the Artist entity. For the Contract Hires Artist relationship, which is 1:1,

we've added a foreign key, contract_ID, to the Contract relation. The primary key is artist_ID.

Attribute Domain Description
Artist_ID String Unique artist ID
Contract_ID String Contract number
Artist_name String Name of artist
Genre String Type of music

Composed_Of

Composed_Of was a relationship between the two strong entities Artist and Member. It

is a N:N relationship, so for converting, we’ve created a relation where each tuple is an instance

of that relationship. The primary key of this relation is the combination of the primary keys from

Artist and Member.

36

Attribute Domain Description

artist_ID String Unique artist ID

Ssn String Social Security Number of
artist member

Member
For converting the strong entity Member, we created a relation that contains all of the

simple attributes from the Member entity. The primary key is ssn.

Attribute Domain Description
Ssn String Social security number
Fname String First name
Lname String Last name
Phone String Phone number
Address String Street address
City String Name of city
State String U.S. state
Zip String Zip code
instrument String Instrument played
Start_date Date Date contract started
End_date Date Date contract ends

Album

For converting the strong entity Album, we created a relation that contains all of the
simple attributes from the Album entity. For the Artist Records Album relationship, which is 1:N,
we’ve added a foreign key, artist_ID, to the Album relation. For the Alboum Recorded At Studio
relationship, which is N:1, we’ve added a foreign key, studio_ID, to the Album relation. The

primary key is album_ID.

37

Attribute Domain Description
Album_ID String Unique album ID
Album_name String Album name
Date_released Date Date album released
Unit_price Float Selling price per album
artist_ID String Unique artist ID
Studio_ID String Unique studio ID
Start_date Date Date work on album began
End_date Date Date work on album ended
Hrs_worked Int Number of hours worked on

album

Sold_Through

Sold_Through was a relationship between the two strong entities Alboum and Transaction.
It is a N:N relationship, so for converting, we’ve created a relation where each tuple is an
instance of that relationship. The primary key of this relation is the combination of the primary

keys from Artist and Member.

Attribute Domain Description
Album_ID String Unique ID for album
Transaction_ID String Unique ID for transaction
Batch_units Int Amount of each album in

transaction

Transaction

For converting the strong entity Transaction, we created a relation that contains all of the
simple attributes from the Transaction entity. For the Transaction Purchased By Buyer
relationship, which is N:1, we’ve added a foreign key, buyer_ID, to the Buyer relation. The

primary key is transaction_|ID.

38

Attribute Domain Description
Transaction_ID String Unique transaction ID
Buyer ID String Unique buyer ID
Date Date Date of purchase

Buyer

For converting the strong entity Buyer, we created a relation that contains all of the

simple attributes from the Buyer entity. The primary key is buyer_id.

Attribute Domain Description
Buyer_ID String Unique buyer ID
Buyer _name String Name of buyer
Phone String Phone number
Address String Street address
City String City
State String U.S. state
Zip String Zip code

Song

For converting the strong entity Song, we created a relation that contains all of the
simple attributes from the Song entity. For the Album Composed Of Song relationship, which is
1:N, we’ve added a foreign key, album_ID, to the Contract relation to link songs to their album.
For the Song Written By Writer relationship, which is N:1, we’ve added a foreign key, writer_ID,

to the Contract relation to link songs to their Writer. The primary key is artist_ID.

Attribute Domain Description
Song_ID String Unique Song ID
Song_name String Song name
Track_no Int Track number on album
Song_length Time Length of song
Album_ID String Unique album ID
Writer_ID String Unigque writer ID

39

Studio

For converting the strong entity Studio, we created a relation that contains all of the

simple attributes from the Studio entity. The primary key is studio_|ID.

Attribute Domain Description

Studio_ID String Unique Studio ID

Studio_name String Name of studio

phone String Phone Number

Address String Street address

City String Name of city

State String U.S. state

Zip String Zip code

Open_date Date Date studio opened

Close_date Date Date studio closed

Hrly cost Float Cost per hour to rent studio
Writer

For converting the strong entity Writer, we created a relation that contains all of the

simple attributes from the Writer entity. The primary key is writer_ID.

Attribute Domain Description
Writer_ID String Unique ID for writer
fname String First name
Iname String Last name
Ssn String Social Security Number
phone String Phone Number
Address String Street address
City String Name of city
State String U.S. state
Zip String Zip code
Start_date Date Date contract started
End_date Date Date contract ends

40

Relational Model

Keys PRIMARY FOREIGN
Contract
| Contract_|D | album_termsa | start_dats | and_dates |
Artizt
| artist_ID | contract_|D | artist_nams | genrs |
Composs_Cf
| Artizt_ID | S5N |
Maminsr
| 55N | fNams | INams | Phone | Address | GCity | State | Ip | Imsatrument | Start_date End_date
Album
| Abum_iD | Album_Name | Date_Relsased |UnitPros [AmeiD |Swoio D | Swndws [Enddws |Hours wok |
Sold_Through
| Tran=action_|D | Album_ID | BatchUnitz |
Tram=action
|Tmmtilul] |E|LI}I‘BIJD | Date |
Buyar
| Buyer_ID | Buyer_Mams | phons | addraas | city | state | Zip
Song
| Song_ID | Track_Mumbsr | Song_Mame | Song_Length | Alburm_ID | Wiiter_ID |
Srudio
| Swdio_ID | Studio_Nams | Phans | Addrass | Cy | Stats | 7o | Opsn_dats | Closs_dats | HourlyGost |
Witer
|wrm_|n |"N.'1.'na | IName |ssw |PhGnE| |Addraas | City |St,:11a |Z::| |Smn_d:na | End_date

41

2.3.2 Sample Data of Relation

Contract
.
-‘ ContractID AlbumTerms StartDate EndDate ‘
I c17813 1 4122/2010 4/1/2011
I ca4086 3 5/29/2010 5/1/2013
B c11308 5 411412011 NULL

| C4752 3 12/06/14 NULL
I ce789 2 9/20/2010 9/1/2012
I cs5390 5 10/22/13 NULL
I css862 6 10/17/12 NULL
B c3a728 2 4/8/2014 NULL
B cozsrt 4 11/22/12 NULL
B cs0643 2 3/8/2010 3/1/2012
I 19760 1 11/11/14 NULL
B cs3622 1 9/4/2011 9/1/2012
B caos79 2 6/18/2012 6/1/2014
B cos710 4 4/5/2014 NULL
I c67044 5 8/23/2010 8/1/2015

Artist

ey
i\ Artist_ID ContractIlD Artist Name Genre
-\ A17813 C17813 Solomon Folk
B A44086 C44086 Bell Rock
I A11328 C11328 Hilda Rock
b A4752 C4752 Baker Metal
I A6789 C6789 Jamalia Classic
I A55390 C55390 Linus Folk
I A85862 C85862 Steven Rock
I A34728 C34728 Colette Alternative
B A93471 C93471 Adena Folk
I A50643 C50643 Angela Rock
I A19760 C19760 Ralph SoftRock
I As3622 C53622 Eliana SoftRock
B A42579 C42579 Chanda Alternative
I A96710 C96710 Yardley Folk
I A67044 C67044 Solomon Rock

42

Composed Of

.‘ Artist_ID SSN
.‘ A17813 115-80-7312
‘ A17813 898-63-6127
‘ A17813 095-12-8618
‘ A17813 718-40-2914
.‘ A17813 094-10-3269
.‘ A17813 390-79-6801
\ A17813 799-51-6609
‘ A44086 466-69-1455
‘ A44086 913-28-7463
.‘ A44086 316-63-2012
‘ A44086 706-38-8832
‘ A11328 230-40-5066
‘ A11328 237-09-5808
.‘ A11328 030-52-9568
J A4752 350-82-6131
.‘ A4752 966-72-8262
\ A4752 174-63-5988
\ A4752 555-69-8350
.‘ A4752 522-64-6239
‘ A4T52 033-39-0750
\ A4752 752-64-0200
‘ A6789 060-96-8225
.‘ A6789 704-11-3574
\ A6789 380-38-4098
.‘ A6789 936-50-7878
‘ A6789 080-69-9386
!‘ A55390 445-08-9490
‘ A55390 694-77-5842
.‘ A55390 359-68-4742
\ A55390 022-62-8780
.‘ A55390 727-70-6860
.‘ A85862 297-66-5184

43

.‘ A85862

727-43-1600
‘ A85862 835-47-1116
.‘ A34728 681-99-1076
.‘ A34728 326-33-7324
‘ A34728 794-07-1975
J A34728 065-29-1852
.‘ A93471 238-44-2093
.‘ A93471 647-75-9371
‘ A50643 493-54-0743
‘ A50643 315-18-5134
‘ A19760 934-66-9708
.‘ A53622 103-18-0494
J A53622 689-61-9138
.‘ A53622 519-05-5209
‘ A53622 130-87-1020
‘ A53622 648-37-7849
‘ A42579 018-38-7601
‘ A42579 647-90-6445
‘ A42579 737-34-7478
‘ A96710 043-98-9774
.‘ A96710 276-39-2123
‘ A67044 800-96-0314
.‘ A67044 055-92-3612
‘ A67044 372-27-3921
!‘ A67044 703-99-8621
‘ A67044 815-09-6438
.‘ A67044 249-64-8859
‘ A67044 539-63-8320
.‘ A67044 985-14-8004
.‘ A67044 355-42-2240
.‘ A67044 196-45-7896

44

Member

S5N fName IName Phone Address City State Zip Instrument Start_date End_date
115-80-7312 | Addison Dane 1-771-325-3488 P.0.Box 140, 5851 Per Avenue Indianapolis IN 46201 Bass 11/08/2010 01/20/2014
898-63-6127 |Harlan Dexter 1-921-624-5844 P.0.Box 447, 3845 Erat, Avenue West Hopewel| Junction Y 12533 keyboard 05102012 1012612015
095-12-8618 |Hircko Martina 1-780-369-8946 980-5300 Dictum Av. Glasgow Ky 4214 keyboard Lt AT
718-40-2914 I Ila 1-535-183-5358 | Ap #937-3791 Metus St. Mount Prospect IL 60056 Guitar 030312009 |10M4i2014

Uta Reed 1-239-176-1619 P.O.Box 527, 7610 Penatibus Rd. Munster N 46321 Piano DRI AT
loan Ferris. 1-510-766-2458 | 762-2790 Condimentum. 5t. Forest Hills Y 11375 Vocals 01/092013 0812612013
Alden Odysseus 1-392-940-5101 | 7839 Cras Ave Palm Beach Gardens FL 33410 Bass 0310172011 08/01/2013
Timon Calista 1-183-780-0028 Ap #732-3331 Cursus Avenue West Orange NJ 7052 Vocals 06/09/2010 08/05/2013
Lara Beau 1-299-943-6744 | 6780 Sapien, Street Brockton LB Z Vocals ORISR AR
Francesca Bree 1-105-417-8578 564-7305 Tellus St Orland Park IL 60462 Bass 08/04/2009 0471112013
Isaac Leila 1-535-133-9149 P.O.Box 350, 3397 Nulla Rd. East Winona MN 55987 Drums EURUE AT
706-38-8832 |Cameron Tatum 1-172-969-4536 9623 Orci, Road Chardon OH 44024 Keyboard 0372712010 07812014
230-40-5066 |Thaddeus |Josiah 1-902-456-7204 Ap #312-5175 Magna, Rd. Yorktown s 23693 Bass fEaiE |earalfs
237-09-5808 |Thaddeus Joan 1-711-341-2441 450-6815 Aliquet 5t. Faribault MN 55021 Drums 02/26/2013 1112912015
030-52-0568 |Daryl Jsillian 1-262-876-8431 | Ap #524-446 Velit. Rd. Loxahatchee FL 33470 Bass EERANE |
350-82-6131 |Heather Timon 1-334-774-2003 P.O_Box 843, 4176 Non Ave Indianapolis N 46201 Drums 11/08/2010 01/20/2014
966-72-8262 |Berk Jelani 1-790-197-8783 | Ap #122-6362 Elementum Av. Maryborough x Hz7 Drums LA UEECEUEE
174-63-5988 |Shellie Kessie 1-419-862-7899 Ap #463-4485 Amet 5t Saint-Honor NY 12533 keyboard 05102012 10/26/2015
555-60-8350 |Harding Fay 1-676-512-8361 | 504-1999 Justo Ave Bazel KY a4 Bass 02110/2012 |04/20/2013
522-64-6239 |Zenia Yvette 1-437-226-8794 796-9703 Arcu. 5t Brunn am Gebirge IL 60056 Piano 0310312009 101142014
033-33-0750 |Karly Ruby 1-125-105-9052 | Ap #390-9509 Sed, Street Watford L HEp i |[TOEETT) | EAEENE
Tucker Kenyon 1-566-133-7495 925-6822 ElitRd. Harelbeke NY 1375 Drums 01/09/2013 05/26/2013
Adam Tanisha 1-433-701-5336 P.O.Box 282, 1071 Et Ave Cleveland FL 33410 Drums TR COGIPO
Bradley Reagan 1-225-367-0851 | P.0.Box 587, 9953 In Avenue Bomal NJ 7052 Guitar 06/09/2010 08/05/2013
Kendall Patricia 1-273-838-1323 7443 Gravida Rd. Taunusstein MA 2301 s 01112011 110/19/2014
Rahim Renee 1-240-948-5291 247 Gravida. Av. Swadlincote IL 60462 Guitar 08/04/2009 0411172013
Shelley Stella 1-152-175-2273 | 614 Tincidunt Street Sint-Stevens-Woluwe MN 55987 Vocals DIV, TGS
Walter Ingrid 1-748-419-0250 4674 Enim. Rd. Reading OH 44024 keyboard 03/27/2010 0782014
Sierra Jin 1-624476-8346 P.O.Box 393, 976 Erat, St. Campbelltown VA 23693 Bass 10152012 |06/29/2013
Abraham Quinlan 1-504-800-3789 | 106 MNon, 5t. Dhuy MN 55021 Drums 0212612013 11129/2015
Lucas Alec 1-139-337-2115 |P.O. Box 105, 139 Imperdiet St. Zonhoven FL 33470 Piano GHERGID Tz
Yoko leanette 1-678-846-7744 | P.O.Box 985, 1703 Commodo Avenue |Verrés IN 46201 Guitar 1110812010 0112012014
Heidi Ainsley 1-104-862-3923 |P.0.Box 514, 7993 Laoreet Road Hattersheim am Main N 46201 Guitar AL TIZLEE
Kadeem Ali 1-962-154-1797 | 748-7299 Scelerisque Ave Cottbus NY 12533 Vocals 08102012 10/26/2015
Lacota Ray 1-377-697-6552 | 1213 Tellus Avenue Christchurch KY 42141 Keyboard e TLRTENE
Unity Fiona 1-310-542-8505 9362 Nullam Rd. Senneville IL 60056 Drums 03/03/2008 10114/2014
Martha Brock 1-696-994-0134 | 5945 Dolor Ave Barrie IN 46321 Piano OREEGE AN
Willow Honorato 1-751-866-8220 |396-1218 Donec Rd. Premena NY 11375 Piana 0110372013 0526/2013
Ramona Halee 1-973-943-3237 | Ap #577-904 Mauris Road West Valley City FL 33410 Drums SR GHTIEE
Charles Tara 1-808-870-1080 | Ap #522-7038 Vivamus 5t. Aszebroek NJ 7052 Piano 06/09/2010 08/05/2013
Yoshi Anne 1-952-388-5101 |P.0.Box 722, 9775 Placerat Avenue | Asso MA 2301 Piano 0111712011 UEAEE0)
Halla Casey 1-852-575-0692 |Ap #850-5478 Facilisis Road Batiscan I 60462 Bass DE/04/2009 0411112013
Fuller Brock 1-929-124-9283 | P.0.Box 281, 4648 Mauris Rd. Kingston-on-Thames MN 55987 Piano OAREA 0 THEAE
Damian Violet 1-783-953-5683 |957-4329 Tortor. Street Rathenow OH 44024 Drums 0312712010 071312014
Paki Ezekiel 1-398-770-8648 | P.O.Box 3132, 3911 Fermentum 5t. Berlin VA 23693 Vocals U202 CEmEnE
Imogene Darius 1-704-388-0188 | 683-8741 Nonummy 5t 5t. Albert MN 55021 Piano 0212612013 112912015
Melvin Joshua 1-187-981-3757 |Ap #166-2136 Facilisis Rd. Tramonti di Sopra =k B0 Drums WITZ AT U=
Malachi Myssa 1-920-537-5019 | 855-7728 Risus Av. Biggleswade N 46201 Guitar 1110872010 0112012014
Moel Holly 1-894-326-3460 | 681-5092 Nunc Avenue Makurdi IN 46201 Drums T TIALEE
Martina Blythe 1-338-546-0577 | 439-4198 Nisl. Road Biez NY 12533 Vocals 051102012 1012612015
Judith Kirby 1-883-514-4306 | 4565 Ante. Av. Dsseldorf KY 42141 vocals I
Rhona Rashad 1-444-623-8960 |P.0.Box 736, 8952 Suscipit Ave Juneau I 60056 Keyboard 031032009 101142014
Jamal Jolene 1-975-148-6231 |239-6604 Nunc Av. Port Hope N 46321 Vocals Gl RS
Jaime Laurel 1-733-265-1472 | Ap #835-5410 Libero Road Arrone NY 1375 Keyboard 01/09/2013 05/26/2013
Libby Jeremy 1-537-410-7125 |P.O.Box 350, 1722 Libero Street Poitiers FL 33410 Vocals Lo GG IENE
Audra Fiona 1-872-560-1899 5953 Vel, 5t Cimitile M 7052 Drums 06/09/2010 080512013
Drake Magey 1-733-374-7345 |754-5259 Orci, Rd. Montebello MA 2301 Bass 0171112011 |1019/2014
ulla Isabell 1-519-893-1634 | 960 Eget St. Wolverhampton IL 60462 Piano 08/04/2009 04/11/2013
Sonya Cheyenne 1-178-367-4775 | 8433 Adipiscing Avenue Paglieta MN 55987 Drums G C B

45

Album

Album_ID |Album_Name | Date_released | Unit_price Artist_ID StudiolD Start_date End_date |Hours_Worked
AL3626 microscope (8-Feb-11 9.99 A17813 S1262 1-Jan-11 3-Feb-11 200
AL4620 midget 7-Feb-13 12.99 A44086 88241 17-Apr-12 |2-Feb-13 200
AL2151 credit card 18-Jul-11 3.99 A11328 S5458 24-Apr-11 11-Jul-11 300
AL7741 system 15-Apr-15 9.99 A4752 S5894 15-Dec-14 |[15-Mar-15 {1000
AL2381 observation |26-Aug-11 7.99 AB789 S6310 15-Feb-11 |20-Aug-11 |200
AL5377 fork 15-Jan-15 2499 A55390 S4552 14-Sep-14 |26-Dec-14 |300
AL5780 t-shirt 24-Jan-13 299 AB5862 S1384 18-Nov-12 |14-Jan-13 |500
AL1803 surgeon 15-Dec-14 1.99 A34728 $1099 17-Nov-14 |1-Dec-14 700
AL5392 wisdom 25-May-14 7.99 A93471 S1017 13-Mar-13 |18-May-14 |800
AL7282 log 16-Aug-11 8.99 A50643 $2383 7-Jun-11 8-Aug-11 70
AL725 laser 24-Dec-15 9.99 A19760 83370 10-Oct-15 [12-Dec-15 |59
AL8817 tap 17-Jan-12 9.99 AB53622 S4099 25-Sep-11 |1-Jan-12 300
AL9098 critic 24-Dec-13 12.99 A42579 S6369 8-Aug-13 12-Dec-13 (250
AL3881 throne 19-Jun-15 14.99 A96710 S3386 2-Feb-15 8-Jun-15 50000
AL4688 hazard 19-Jan-13 16.99 AB7044 S126 5-Oct-12 1-Jan-13 300

Sold Through

T17813
T44086
T11328
T4752

T6789

T55390
T85862
T34728
T93471
T50643
T19760
T53622
T42579
T96710
T67044

TransactionlD

AL3626
AL4620
AL2151
AL7741
AL2381
AL5377
AL5780
AL1803
AL5392
AL7282
AL725

AL8817
AL9098
AL3881
AL4688

AlbumID

46

Batch Units

200000
250000
150000
10000
500000
25000
1000
100
55000
230000
100000
1500
2000
250
100000

Transaction

TransactionlD Buyer_ID Date

T17813 B0O0001 10/05/15

T44086 B0O0005 06/26/14

T11328 B00003 07/25/14

T4752 B00004 09/09/14

T6789 B00005 09/23/15

T55390 B0O0006 03/21/15

T85862 B00004 11/21/15

T34728 B00005 09/18/14

T93471 B00006 04/10/15

T50643 B00005 08/05/14

T19760 B00005 04/01/15

T53622 B0O0O001 01/21/14

T42579 B00004 11/30/13

T96710 B00006 09/19/15

T67044 B00001 10/05/15

Buyer

Buyer_ID Buyer_name phone address city state zip
BOO0O1 FYE 1-410-941-0560 | 7910 Dolor. Road Tacoma WA 25345
BOO002 | Kmart 1-379-875-2434 | 8617 Adipiscing Rd. | West Valley City UT | 81502
BOOO03 | wal-Mart 1-932-271-7830 | 6554 Urna St. Boise ID 41529
BOO004 | Costco 1-249-978-7321 | 4592 Aliquet. Road | Aurora CO | 49142
BOOOOS | Target 1-184-341-5591 | 1136 Id Street Chicago IL 34218
BOOO06 | AmoebaRecords 1-481-394-3965 | 9627 Amet St. Jonesboro AR 72604
BOOOO/ | The Warehouse 1-463-400-3980 | 4382 Augue St. Madison Wi 37518
BOOOO8 | Suncoast 1-421-736-7118 | 6594 Urna Avenue Boise ID 40083
BOOOOS | Shop Here Please 1-121-935-1648 | 5537 Donec Street Springfield IL 91158
BOOO10 | Dollar General 1-460-442-9430 | 4400 Aliquet Av. Kailua HI 32090
BOOO11 | One Stop Shop 1-464-348-8587 | 5161 Aenean Rd. Billings MT | 94754
BOO012 | S-Mart 1-656-784-3345 | 8367 Habitant St. San Diego CA 92003
BOOO13 | Quick Stop Groceries | 1-618-594-7681 | 3545 Quisque Street | Saint Paul MN | 69624
BO0014 | Sears 1-457-567-9254 | 2714 Nung, Street Davenport IA 67485
BOOO15 | Records R Us 1-613-336-1368 | 8167 Nibh. Road Baltimore MD | 76135

47

Song

.‘ Song_ID

Track_Number Song_name Song_length | AlbumID | WriterlD

.‘ 508882 1 Dude Dude 8:84 AL3626 W1262
.‘ 507345 2 Shut Clock 6:58 AL3626 W1262

‘ S03375 3 Unkempt Bone 9:13 AL3626 W1262
.‘ S08701 4 Aquatic Downtown 2:27 AL3626 W1262
.‘ S09804 5 Premium Sign 3:76 AL3626 W1262

‘ S00740 6 Old-Fashioned Bead | 4:55 AL3626 W1262
.‘ 508528 7 Neat Pigs 3:99 AL3626 W1262
.‘ S04682 8 Few Crack 4:85 AL3626 W1262
.‘ 508488 1 Flashy Ocean 4:77 AL3626 w8241
!‘ S01533 2 Faithful Whip 0:76 AL3626 w8241
.‘ S03099 3 Confused Screw 6:10 AL4620 w8241
.‘ 501814 4 Holy Hell 1:98 AL4620 w8241

‘ 506409 1 Tent Treatment 8:53 AL4620 w8241
.‘ S03550 2 Rainstorm Apples 6:02 AL4620 W8241
.‘ 501839 3 Birth Soap 2:06 AL4620 w8241

‘ 502571 4 Minute Popcorn 5:35 AL4620 w8241
.‘ S06969 5 Jewel Note 3:57 AL4620 w8241
.‘ S07506 6 Change Question 6:68 AL4620 W5458
.‘ SO5478 6 Letter Circle 5:64 AL4620 W5458
.‘ 505772 7 Base Fork 3:48 AL4620 W5458
.‘ 501843 8 Good-Bye Meeting 1:32 AL4620 W5458
!‘ S04135 9 Fight Expansion 6:61 AL4620 W5458

‘501915 1 Light syrup 5:21 AL4620 W5458
.‘ S02408 1 Object Book 7:81 AL4620 W5458
.‘ S00776 2 Marry Touch 6:10 AL4620 W5458
.‘ S08410 3 Justify Chin 8:68 AL2151 W5894
.‘ 508202 4 Bounce Stick 5:32 AL2151 W5894
.‘ S02521 5 Cheat Air 5:52 AL2151 W5894
.‘ S01231 6 Breed Uncle 1:68 AL2151 W5894

48

S08531
503251
503942
SO01421
S09412
S04618
SO0985
SO6835
508417
509423
SO4161
S03935
508108
S00478
SO5138
S03275

»w v uvu uvu v v uvu u v u u u u
O 0O 0O 0o o o o o o o o o o
o O OO B 00 o o O A O O W N
o A A A 00 A 0O 00 O W O R R
N O 1 L1 1 I N O kB O 0 O kB Kk
w P, N oo

S00892

S03588

S06478

e e R I S = [- T T EN
N~ o o W N B O

N~ o o~ WOWN P P N PN P © 00N o ook wDN P

Mislead Beggar
Analyze Secretary
Exercise View
Intend Approval
That’s too much
Talented Turkey
Arrogant Apples
Young Yard
Simple Scent
Ten Town
Comfortable Cactus
Cooing Crayon
Pricey Party
Poised Plastic
Silly Scale
Ketchup and Al
Wax War

Art Ants

Mind Minister
Mother Mice
Texture Tramp
Bread Bean
Ship Space
Prose Produce
Plough Pump
Skate Spot
Don’t touch me
Ascertain Army
Jail Join

Branch Bath
Sense Slope

Search Stop

49

9:81
6:07
0:25
3:16
6:62
1:33
5:38
4:93
9:76
7:74
6:49
6:69
8:73
9:63
9:45
3:11
6:14
8:46
7:05
0:63
7:55
1:86
5:97
6:98
2:11
1:04
4:69
2:36
7:62
4:44
7:99

2:39

AL2151
AL2151
AL2151
AL2151
AL7741
AL7741
AL7741
AL7741
AL7741
AL7741
AL7741
AL7741
AL7741
AL7741
AL7741
AL7741
AL7741
AL7741
AL7741
AL7741
AL7741
AL2381
AL2381
AL2381
AL2381
ALS5377
AL5377
AL5377
AL5377
AL5377
AL5377
AL1803

W5894
W5894
W5894
W5894
W5894
W5894
W6310
W6310
W6310
W6310
W6310
W6310
W6310
W6310
W4552
W4552
W4552
W4552
W4552
W4552
W4552
W4552
W4552
W4552
W4552
W1384
W1384
W1384
W1384
W1384
W1384
W1384

504088
SO4779
S00859
S03772
SO7864
SO7597
SO0073
S05223

v v
o O
R
W U
BN
N |

07996

v O

03087

06947

v O

03981

v v v v v v v v v v v v v v v v
o o o o o o o o o o o o o o o O
N WONINN RO W 0NN W N o
® B | O N W & L o L W N A 0 U W
o & [N W |k B O B 00 O 06 o o A 00 N
w A W N W O N N O, W N

S01986

SO7525

B kPP P © |
A W N P O

a »~» W N P

o o~ WN FP P O 0o N o 0o M 0PN PP o 0o N o

Smile Stew
Bump Beam
Receive Reward
Sell Slope
Misunderstand Meal
Cough Range
Zipper Camp
Heat Vegetable
Clouds Disgust
Touch me
Attack Uncle

Determine Dress
Recommend
Direction

Scream Birthday
Fax Secretary
Process Road
Squash Pickle
Diagnose Bomb
Experiment Authority
Finalize Plantation
Help me

Elite Edge

Pushy Pollution
Disillusioned Donkey
Uppity Underwear
Ad Aunt

Tacit Tooth

Married Morning
Fallacious Fuel
Massive Mass
Careless Chair

It was the dog

50

0:28
6:63
1:77
1:37
1:89
5:51
8:12
2:59
1:34
3:83
9:81
8:50

6:30
7:59
5:41
0:58
2:07
8:03
4:58
0:24
9:58
5:19
8:23
8:62
6:27
8:39
7:23
0:14
0:86
1:25
3:54

9:44

AL1803
AL1803
AL1803
AL1803
AL1803
AL1803
AL1803
AL1803
AL5392
AL5392
AL5392
AL5392

AL5392
AL5392
AL5392
AL5392
AL5392
AL5392
AL7282
AL7282
AL7282
AL7282
AL7282
AL7282
AL7282
AL725

AL725

AL8817
AL8817
AL9098
AL9098
AL9098

W1384
W1384
W1384
W1384
W1384
W1099
W1099
W1099
W1099
W1099
W1099
W1099

W1099
W1099
W1099
W1099
W1099
w1017
w1017
w1017
w1017
W2383
W2383
W2383
W2383
W2383
W2383
W3370
W3370
W3370
W3370
W3370

.‘ 506298 7 Smoke Shame 1:51 AL3881 W3370
.‘ S01895 8 Crate Chance 3:48 AL3881 W3370
.‘ 509648 9 Square Shop 2:47 AL3881 W4099
.‘ S07926 10 Juice Jewel 9:38 AL4688 W6369
‘ S04249 11 Blow Baseball 5:85 AL4688 W3386
.‘ $01891 12 Business Beam 6:68 AL4688 | W126
!‘ 504994 13 Stomach Shirt 5:92 AL4688 W1262
Writer
fName IName SSN Phone Address City State Zip Start_date End_date
219-63-9062 IN 46201 11/08/2010 01/20/2014
Rhea Amaya 1-786-379-4906 681 Route 32 Indianapolis
217-80-9469 NY 12533 05/10/2012 10/26/2015
Neil Christopher 1-666-928-0290 747 2nd Street West Hopewell Junction
235-86-3894 i KY 42141 02/19/2012 04/20/2013
Rafael Henry 1-553-866-5682 621 Main Street Glasgow
476-35-0140 . IL 60056 03/03/2009 10/14/2014
Sarah Jorden 1-249-129-3089 458 Inverness Drive Mount Prospect
439-86-1590 . IN 46321 07/08/2011 12/19/2013
Angela Leilani 1-664-565-6363 157 Williams Sireet Munster
329-74-0439 NY 11375 01/09/2013 05/26/2013
Idola Aline 1-223-723-4437 761 Ann Street Forest Hills
166-20-0007 FL 33410 03/01/2011 09/01/2013
Cody Yetta 1-145-811-5254 275 Beech Street Palm Beach Gardens
578-26-9691 NJ 7052 06/09/2010 08/05/2013
Jermaine Wayne 1-318-413-1114 961 Route 44 West Orange
478-32-1350 MA 2301 01/11/2011 10/19/2014
Jocelyn Patricia 1-238-343-1057 657 Locust Sireet Brockton
680-22-5134 IL 60462 08/04/2009 04/11/2013
Fay Cleo 1-572-953-0248 957 Penn Street Orland Park
508-42-5295 i MN 55987 01/01/2011 07/05/2015
Sharon Hamilton 1-749-852-3465 209 Main Street East Winona
358-64-3701 L OH 44024 03/27/2010 07/18/2014
Fletcher Kristen 1-574-253-8981 613 Victoria Court Chardon
530-53-0524 § . VA 23693 10/15/2012 06/29/2013
Carolyn Karen 1-428-413-4720 570 Windsor Dnve Yorktown
036-07-7409 . MN 55021 02/26/2013 11/29/2015
Glenna Fatima 1-243-753-0311 978 Mill Street Faribault
576-61-7175 3 FL 33470 04/12/2010 10/29/2014
Rhea Amaya 1-786-379-4906 186 Glenwood Drive Loxahatchee
. . 270-34-9838 . _ IN 46201 11/08/2010 01/20/2014
Neil Christopher 1-666-928-0290 681 Route 32 Indianapolis
Studio
Studio_ID Studio_Nam Phone Address City State Zip Start_date End_date HourlyCost
51262 Ante Maecenas Mi Limited 1-786-379-4906 |681 Route 32 Indianapolis IN 46201 (N DT $116.74
$8241 Pede Malesuada Industries 1-666-928-0290 747 2nd Street West Hopewell Junction NY 12533 05/10/2012 10/2612015 $86.88
55458 Duis Institute 1-553-866-5682 621 Main Street Glasgow KY 42141 BRI DATENE $110.44
55894 Nec Euismod LLC 1-249-129-3083 458 Inverness Drive Mount Prospect IL 60058 03/03/2003 101142014 $98.69
56310 Imperdiet Ornare In Associates 1-664-565-6363 157 Williams Street Munster N 48321 DACEEL Al E $114.62
54552 Magna Institute 1-223-723-4437 |761 Ann Street Forest Hills Ny 1375 01/03/2013 05126/2013 $136.50
51384 Etiam Ligula Corp. 1-145-811-5254 275 Beech Street Palm Beach Gardens FL 33410 DR DTN E $135.69
51099 Est Mauris Rhoncus Corp. 1-318-413-1114 961 Route 44 West Orange NJ 7052 06/03/2010 08/05/2013 5154.24
51017 Aenean Massa Associates 1-238-343-1057 657 Locust Street Brockton MA 2301 DAL AT $197.25
52383 Est Mollis Non LLP 1-572-953-0248 957 Penn Street Orland Park I 60462 08/04/2003 04/11/2013 $135.08
$3370 Eu Accumsan Sed Inc. 1-749-852-3465 209 Main Street East Winona MN 55987 VT WA $171.32
54099 Ultricies Adipiscing LLP 1-574-253-8981 613 Victoria Court Chardon OH 44024 03/27/2010 071812014 $180.04
56369 Arcu Inc. 1-428-413-4720 570 Windsor Drive Yorktown VA 23693 ez VEEIEE $97.29
53386 Orci Lobortis Augue Ltd 1-243-753-0311 978 Mill Street Faribault MM 55021 02/26/2013 1112302015 $93.24
5126 Cursus Inc. 1-786-379-4906 186 Glenwood Drive Loxahatchee FL 33470 DRI [LUEEICIES $91.78
51262 Ante Maecenas Mi Limited 1-666-928-0290 |681 Route 32 Indianapolis IN 46201 11/08/2010 011202014 $116.74

51

2.4 Sample Queries for Database

Once a database has been developed, data must be retrieved using formal queries. We

will show a few simple SQL queries of our database before getting into more complex queries.
SELECT * FROM ARTIST;

This query would result in all the columns from the ARTIST table being extracted. The
SELECT command allows for the extraction of information directly from a table and the *
operator allows for the retrieval of all columns. FROM specifies where the data will be pulled
from, with ARTIST being the relation we’re querying in this example. The query, in English, reads
as: Select all attributes from the table Artist.

We can also be much more specific in the data we wish to retrieve from our database.
We can choose which fields we want to view.

SELECT album_name, date_released FROM ALBUM WHERE album_ID = ‘12345’;

In Relational Algebra, the equivalent expression is the following:

TU album_name, date_released (O album_ip="123456' (Album))

Using a Select operation, we are able to narrow down the results to only those Albums
with the ID being equivalent to ‘123456, but using a Project operation we only retrieve two
columns: album_name and date_released.

SELECT artist_id, artist_name FROM ARTIST WHERE genre = ‘Rock’ ORDER BY DESCENDING;

Using SELECT, we specify which attributes we want retrieved, which are artist_ID and
artist_name. Then, using the FROM operator, we specify we want data FROM the ARTIST table,

but only WHERE the genre of the artist is ‘Rock’. This will output all Rock Artists. In SQL, the

52

result set can also be ordered to be more appealing or for a specific purpose, as shown in the
example with ORDER BY DESCENDING.

In the case where a count is required, the following query is an example of this.

SELECT COUNT (*) FROM ALBUM,;

This query would return the amount of albums within our ALBUM entity. This information
could be useful for production purposes.

The entire purpose of this section was to display how powerful queries can be. Practically
anything and everything can be retrieved from the database with the correct queries. But these
were very simple examples. In the following sections, examples queries are shown that are far

more complex and expressive.
2.4.1 Design of Queries

The following list are ten non-trivial sample queries that are designed specific to our
database. These are great examples to show the expressiveness of data retrieval through queries
and will be later written using three formal languages: Relational Algebra, Tuple Relational
Calculus, and Domain Relational Calculus.

1. Find all active artists who have recorded at Amoeba Studios.
2. Find all artists who have recorded at least two albums.

3. Find all writers who have only written one song.

4. Find a list of albums that contain only one song (singles).

5. Find albums that have at most three songs

6. Find the longest song.

7. Find the least expensive studio.

53

8. Find all artists who have recorded at all studios.
9. Find the albums that have been purchased by every buyer.

10. Find the most worked on album between Jan 10 2011 and October 39, 2013.

2.4.2 Relational Algebra Expressions

Relational Algebra is procedural language, comprised of a set of operations used for
defining queries to retrieve data stored in a Relational Database. A sequence of these operations
is a relational algebra expression, whose output is a relation that contains data queried from a

database. Below are ten query examples from our database written using Relational Algebra.

1. Find all active artists who have recorded at Amoeba Studios.

TUArtist_name (OStudio_name = “Amoeba” (Studio*Album * (OEnd_date - nul(Artist*Contract)))))

2. Find all artists who have recorded at least two albums.

Al & (Artist * Aloum)
A2 & (Artist * Album)

TUALartist_Name (O ALartistiD = A2.artistiD A AL.albumiD # A2.albumip (ALl X A2))

3. Find all writers who have only written one song.

s1 < (Song * Writer)
s2 & (Song * Writer)

TU s1.fname, sl.lname (51 — TUs1* (O sl.writerlD = s2.writerID (51 X 52)))

4. Find a list of albums that contain only one song (singles).

S1 < Song
S2 < Song
NOtSing|es & Tls1* (0 sl.song_ID #s2.song_ID A sl.album_ID = s2.album_ID (51 X 52))

54

TlAlbum_Name (Album * (1t aibum_ip (SONg - NotSingles)))

5. Find albums that have at most three songs

T album_1b (O COUNT song 10 <=3 (album_ip < count song o (Song * Album))

6. Find the longest song.

S1<Song
S2<Song

TU s1.song_name, s1.song_length (O s1.song_length >s2.song_length (Sl X SZ))

7. Find the least expensive studio.

S1<Studio

S2<Studio

Expensive & (TUsix (O s1.hourlyCost > s2.hourlyCost (S1 X S2)))
TU studio_name, hourly_Cost (Studio - Expensive)

8. Find all artists who have recorded at all studios.

TU artist_name (Artist * ((TUartist_ID, studio_ID (Album)) - (TUstudio_ID (StUd|O)))

9. Find the albums that have been purchased by every buyer.

TU album_name, album_ID (TU albumid, buyer 0 (Album * SoldThrough * Transaction) = (T buyer I
(Buyer))

10. Find the most worked on album between Jan 10" 2011 and October 3, 2013.

A1<= O start_date < 10/3/2013 A end_date > 1/10/2011 (Album)
A2& o start_date < 10/3/2013 A end_date > 1/10/2011 (Al bu m)
TUaLalburn_name (O al.hrs_worked > a2.hrs worked (AL X A2'))

55

2.4.3 Tuple Relational Calculus Expressions

Tuple Relational Calculus is a non-procedural language used to define what information
to retrieve from a database, but not how to retrieve it. Tuple Relational Calculus expressions
utilize variables that range over tuples from relations in a Relational Database. These expressions
are based on predicate logic, which make use of the Existential (3) and Universal (V) quantifiers.

Below are ten example queries written using Tuple Relational Calculus.

1. Find all active artists who have recorded at Amoeba Studios.

{t | Artist(t) A (3c) (contract(c) A c.end_date = null A t.contract_id = c.contract_id A (Ja 3s)
(Album(a) A Studio(s) A a.artist_ID = t.artist_ID A a.studio_ID = s.studio_ID A s.studio_name =
“Ameoba Studios”))}

2. Find all artists who have recorded at least two albums.

{t | Artist(t) A (3A1,3A2) (Album(A1) A Album(A2) A Al.albumID # A2.albumID A
Al.artistID = t.artist_ID A A2.artistID = t.artist_ID) }

3. Find all writers who have only written one song.

{w | Writer(w) A (3s1) (Song(s1) A sl.writerlD = w.writer_ID A =(3s2) (song (s2) A
s2.writer_ID = w.writer_ID As2.song ID #sl.song ID))}

4. Find a list of albums that contain only one song (singles).

{a | Album(a) A (3s1) (Song(s1) A sl.album_ID =a.album_ID A =(3s2) (song(s2) A
s2.album_ID = a.album_ID A s2.songID # s1.song_ID))}

5. Find albums that have at most three songs

{a | album(a) A =(3s)(Song(s) A s.album_ID = a.album_ID A s.track_number >=4) }

56

6. Find the longest song.

{s | Song(s) A= (3s2) (Song(s2) A s2.length >s.song_length) }
When you move in the negation:

{s | Song(s) A (Vs2) —=(Song(s2) » s2.length > s.song_length) }

{s | Song(s) A (Vs2) (-Song(s2) V —(s2.length > s.song_length)) }
{s | Song(s) A (Vs2) (-Song(s2) V (s.2length <=s.song_length)) }
{s | Song(s) A (Vs2) (Song(s2) = s2.length <=s.song_length))}

7. Find the least expensive studio.

{s | Studio(s) A =(3s2) (Studio(s2) A s2.hourly _cost < s.hourly_cost) }
When you move in the negation:

{s | Studio(s) A (Vs2) (-Studio(s2) V =(s2.hourly_cost < s.hourly_cost)
{s | Studio(s) A (Vs2) (-Studio(s2) V (s2.hourly _cost >=s.hourly_cost)
{s | Studio(s) A (Vs2) (Studio(s2) = (s2.hourly _cost >=s.hourly_cost) }

}
}

8. Find all artists who have recorded at all studios.

{t | Artist(t) A (Vs) (Studio(s) = (3a) (Aloum(a) A a.artist_ID = t.artist_ID A a.studio_ID =
s.studio ID))}

9. Find the albums that have been purchased by every buyer.

{a | Alboum(a) A (Vb) (Buyer (b) = (3t 3Is) (Transaction(t) A Sold_Through(s) A s.transaction_ID =
t.transaction_ID A s.album_ID = a.album_ID A t.buyerID = b.buyeriD)) }

10. Find the most worked on album between Jan 10" 2011 and October 3, 2013.

{a | Album(a) A a.start_date < 10/3/2013 A a.end_date > 1/10/2011 A —=(3 a2) (a2.hrs_worked >
a.hrs_worked A a2.start_date < 10/3/2013 A a2.end_date > 1/10/2011) }

2.3.3 Domain Relational Calculus Expressions

Domain Relational Calculus is very similar to Tuple Relational Calculus. It is also a non-

procedural language used to define what information to retrieve from a database, but not how

57

to retrieve it. These expressions are also based on predicate logic, which make use of the
Existential (3) and Universal (V) quantifiers. The main difference is that Domain Relational
Calculus and Tuple Relational Calculus is that Domain Relational Calculus uses variables that
range over domains of attributes, not tuples. Below are ten example queries written using Tuple
Relational Calculus.

1. Find all active artists who have recorded at Amoeba Studios.

{<alD, cID, n> | Artist(alD, cID, n, _) Acontract(cID, _, _, !=null) A(3s Ja) (Studio(s, “Amoeba
Studios”, _, _, _, _, _, _, _, _)AAlbum(_, _, _, _,alD,s, _, _,)}

2. Find all artists who have recorded at least two albums.

{<n,alD>| Artist(alD, , n,) A(3A1,3A2) (Aloum(A1, , , ,alD, , , ,)AAlbum(A2, , , ,
alD, , , ,) AA1l=A2}

3. Find all writers who have only written one song.
{w | Writer(w, _, _, _, _, _, _, _, _, _)A(3s1) (Song(sl, _, _, _, _, w) A=(3s2)(Song(s2, _, _, _, _,

w) Asl I=5s2))}

4. Find a list of albums that contain only one song (singles).

sl 1=s2))}

5. Find albums that have at most three songs

6. Find the longest song.
{<N,L> | (Song(_, _, N, L _, _)A=(3L2)(Song(_, _, N,L2, _, _)AL2>L))}

7. Find the least expensive studio.

58

8. Find all artists who have recorded at all studios.
{<alD, n>| Artist(alD, , n,) A(V¥s) (Studio(s, , , , , ,_, , _,)—>(3a)Album(, , , ,
alD,s, _,_,)}

9. Find the albums that have been purchased by every buyer.

ASoldThrough(tID, alD,))}

10. Find the most worked on album between Jan 10t" 2011 and October 3¢, 2013.
{<a,alD, hw> | Aloum(alD,n, , , , ,<10/3/2013,>1/10/2011, hw) A=(3 hw2) (Aloum(alD,
n,_,_, , ,<10/3/2013,>1/10/2011, hw2) Ahw2 > hw)}

59

Phase 3: Implementation of Relational Database

3.1 Relation Normalization

3.1.1 Anomalies

For relations that have yet to be normalized, it is possible to encounter a number of issues.
The main issues are insertion, deletion, and modification anomalies.
Insertion Anomalies

For poorly defined relation schema, insertion anomalies are common. For example, if

our Album table contained all attributes for the Studio where each album was recorded at, and
we were going to insert a new Album in the Album table, we would need to make sure that the
Studio attributes were consistent between Album tuples. This would also make it difficult to
insert a new Studio into the database since there are no Albums that were recorded there yet.
The only workaround for this issue is to insert NULL values in the attributes for the Album, which
could lead to integrity constraint issues, or to normalize the relation, which will be discussed

later.

Deletion Anomalies

The main issue with deletion anomalies is connected to the second insertion anomaly. If
we were to delete an Alboum from the Album table that could possibly be the only Album that
was recorded at a particular Studio, the information that once existed for that Studio would be

completely lost.

60

Modification Anomalies

Update Anomalies are when, in a poorly designed schema, updating a value in one tuple
can cause inconsistencies across many other tuples in a relation. For example, if somebody were
to change the value of an attribute of a Studio, all Aloum tuples that contain data for this Studio
would need to be updated to reflect this new information. If this is not done correctly, massive

data inconsistencies can result from this.

3.1.2 Normalization

Normalization is the process of analyzing database relations in order to have them
conform to certain degree of normal, aimed at reducing redundant data and data anomalies. The
normalization procedure consists of a series of tests done against relations, looking for
opportunities to decompose the relations when necessary to minimize potential data issues.

The goal of normalization is done to minimize the amount of data redundancy that
occurs, as well as to minimize insertion, deletion, and update anomalies, as was previously
described. But there are varying degrees of normalization. The main types of normalization are
as follows: First Normal Form, Second Normal Form, Third Normal Form, and Boyce-Codd
Normal Form.

First Normal Form

First Normal Form, or 1NF, states that the domain of a particular attribute must only be
atomic values, and that the value of any attribute must be a single value from the domain of that
attribute. This does not allow for having a set of values, tuple of values, or a combination of the

two. This also does not allow for nested relations. 1NF is now considered to be a part of the

61

definition of a relation in the relational model, were multi-valued attributes, and composite

values are not allowed.

Second Normal Form

Second Normal Form, or 2NF, utilizes the concept of full functional dependency. The
functional dependency A - B is described as having full functional dependency if upon
discarding any attribute C from A means that the dependency does not hold. So for relations that
have primary keys containing more than one attribute, any non-key attribute should not be
functionally dependent on a part of the primary key. 2NF must also satisfy 1NF.

For example, if we were to have a member tuple where {SSN, address} - fname is a
functional dependency. If we removed address from the dependency and it still held as true,

then it would not conform to 2NF.

Third Normal Form

Third Normal Form, or 3NF, utilizes the concept of transitive dependency. The functional
dependency between A = B in a relational schema T is a transitive dependency if there is a set of
attributes C in T that is neither a candidate key or a subset of any key of T, as well as both A - C
and C—->B. In other words, no relation should have any non-key attributes functionally dependent
on another single non-key attribute, or set of non-key attributes. 3NF must also satisfy 1INF and

2NF.

62

Boyce-Codd Normal Form

Boyce-Codd Normal Form, or BCNF, is similar to 3NF, but is much more strict and
stronger. For relational schema R to be in BCNF it must be the case such that, if whenever a
nontrivial functional dependency X — A holds in R, then X is a super key of R. The definition of
BCNF only differs slightly from 3NF since the condition of 3NF which would allow A to be prime is
not within the definition of BCNF. The absence of this condition makes BCNF a stronger normal

form than 3NF.

3.1.3 Relation Normalization

Upon designing this relational database, we followed the 1NF rule that multi-valued
attributes and composite values are not allowed. Our initial E-R Model design did not contain any
multi-valued attributes or composite values to begin with, so upon converting the E-R model to

Relational Model, the adherence to 1NF came naturally from our design.

Following the Normalization principles allowed us eliminate redundant information, such
as for the Buyer relation. In early design stages, Buyer information was stored in each
Transaction tuple, which created a potential problem with inconsistent data. But by
decomposing the Transaction relation, we were able to create a Buyer relation that would

centralize all Buyer information as and eliminate any redundant and inconsistent data.

The only potential modification anomaly that is currently present in our database is how
our songs are stored in the Song relation. Each song tuple holds is track number, which signifies

its place in the track listing of its respective album. This information must be stored in this

63

manner, so to minimize any problems, either a procedure will be created to correct any potential

problems, or this will be handled on the back-end of the GUI.

3.2 SQL *Plus

3.2.1 Main Purpose

SQL *Plus is a powerful, yet simple, command-line program that allows the user to
execute commands that allow for the creation of Oracle database components, as well as the
ability to maintain and update an Oracle database. SQL *Plus also allows for the execution of
SQL, and PL/SQL statements for querying, updating, or deleting data, as well as to create

procedures or schema objects.

3.2.2 Oracle Schema Objects

Schema objects are logical structures of data in a database. Oracle allows many
different types of schema objects for their relational databases. Some examples of schema
objects are dimensions, sequences, synonyms, and clusters. The main objects that we are using
so far and the objects we plan to use are listed as follows:

Tables
Tables are the basic structures used by databases to store data. They are composed of

tuples and attributes.

Syntax:

CREATE TABLE tableName
{

columnNamel dataType constraintl constraint2 ...,
columnName2 dataType constraintl constraint2...,

64

CONSTRAINT constraintNamel PRIMARY KEY (columnName, columnName,...),
CONSTRAINT constraintName2 FOREIGN KEY (columnName) REFERENCES tableName
(columnName),

CONSTRAINT constraintName3 CHECK(condition)

Views
A view is a logical, or virtual, table that is based on a stored query that gets data from

already existing base tables. Views are useful in the case of building GUI’s, as the application can

pull its information from views, rather than base tables.

Syntax:

CREATE VIEW viewName AS
SELECT columnNames
FROM tableName

WHERE condition

Stored procedures
Stored procedures are a set of SQL statements that, together, perform a specific task
on the database. They can take parameters, similar to functions, and can be used to encapsulate

a set of operations.

Syntax:

CREATE OR REPLACE PRODEDURE procedureName
IS
BEGIN
--CODE HERE
END;

65

Triggers
Triggers are procedures that are implicitly executed whenever an insert, delete, or

update command is executed on the database.

Syntax:

CREATE TRIGGER triggerName
triggerTime triggerEvent
ON tableName FOR EACH ROW
triggerBody

Indexes

An index is an object that contains an entry for each value that every indexed column
contains. Indexes allow for direct and fast access to rows in the database, which makes queries
perform much more efficiently.

Syntax:

CREATE INDEX indexName
ON tableName (columnName)

66

3.3 Relation Schema and Data

3.3.1 Contract

CONTRACT_ID
ALBUM_TERM
START_DATE
END_DATE

CONTRACT_ID

NOT NULL

S

ALBUM_TERMS

VARCHAR2(10)
NUMBER(5)
DATE

DATE

START_DATE END_DATE

C00001
C17813
C44086
C11328
C4752

C6789

C55390
C85862
C34728
C93471
C50643
C19760
C53622
C42579
C96710
C67044

3.3.2 Artist

ARTIST_ID
CONTRACT_ID
ARTIST_NAME
GENRE

ARTIST_ID
A17813
A44086
A11328
AAT52
A6789
A55390
A85862
A34728
A93471
A50643
A19760
A53622
A42579
A96710
A67044
A00001

10 23-AUG-10
1 22-APR-10 01-APR-11
3 29-MAY-10 01-MAY-13
5 14-APR-11
3 06-DEC-14
2 20-SEP-10 01-SEP-12
5 22-0OCT-13
6 17-OCT-12
2 08-APR-14
4 22-NOV-12
2 08-MAR-10 01-MAR-12
1 11-NOV-14
1 04-SEP-11 01-SEP-12
2 18-JUN-12 01-JUN-14
4 05-APR-14
5 23-AUG-10
NOT NULL VARCHAR2(10)
NOT NULL VARCHAR2(10)
NOTNULL ~ VARCHAR2(60)
VARCHAR2(20)
CONTRACT_ID ARTIST_NAME GENRE
C17813 Solomon Folk
C44086 Bell Rock
C11328 Hilda Rock
C4752 Baker Metal
C6789 Jamalia Classic
C55390 Linus Folk
C85862 Steven Rock
C34728 Colette Alternative
C93471 Adena Folk
C50643 Angela Rock
C19760 Ralph SoftRock
C53622 Eliana SoftRock
C42579 Chanda Alternative
C96710 Yardley Folk
C67044 Shaman Rock
C00001 Queen Rock

67

3.3.3 Composed_Of

ARTIST_ID
SSN

ARTIST_ID
A11328
A11328
A11328
A17813
A17813
A17813
A17813
A17813
A17813
A17813
A19760
A34728
A34728
A34728
A34728
A42579
A42579
A42579
A44086
A44086
A44086
A44086
A4752
AAT752
A4752
A4752
AAT752
A4752
A4752
A50643
A50643
A53622
A53622
A53622
A53622
A53622
A55390
A55390
A55390
A55390
A55390
A67044
A67044
A67044
A67044
A67044
A67044
A67044
A67044
A67044
A67044
A6789
A6789
A6789
A6789
A6789
A85862
A85862
A85862
A93471

NOT NULL VARCHAR2(10)
NOT NULL VARCHAR2(9)

030529568
230405066
237095808
094103269
095128618
115807312
390796801
718402914
799516609
898636127
934669708
065291852
326337324
681991076
794071975
018387601
647906445
737347478
316632012
466691455
706388832
913287463
033390750
174635988
350826131
522646239
555698350
752640200
966728262
315185134
493540743
103180494
130871020
519055209
648377849
689619138
022628780
359684742
445089490
694775842
727706860
055923612
196457896
249648859
355422240
372273921
539638320
703998621
800960314
815096438
985148004
060968225
080699386
380384098
704113574
936507878
297665184
727431600
835471116
238442093

68

3.3.4 Member

SSN
FNAME

NOT NULL
NOT NULL

VARCHAR?
VARCHAR?

LNAME
PHONE
ADDRESS
CITY

STATE

ZIP
INSTRUMENT
START_DATE
END_DATE

VARCHAR?
VARCHAR?

VARCHAR?
VARCHAR?
VARCHAR?
VARCHAR?
DATE
DATE

(10)
(45)
(45)
(45)
VARCHAR2(50)
(45)
(20)
(10)
(60)

SSN FNAME LNAME PHONE ADDRESS cITYy STATE ZIP INSTRUMENT START_DATE END_DATE
115807312 Addison Dane 17713253488 P.O. Box 140, 5851 Per Avenue Indianapolis IN 46201 Bass 08-NOV-10 20-JAN-14
898636127 Harlan Dexter 19216245844 P.O. Box 447, 3845 Erat, Avenue West Hopewell NY 12533 Keyboard 10-MAY-12 26-0CT-15
095128618 Hiroko Martina 17803698946 980-5300 Dictum Av. Glasgow KY 42141 Keyboard 18-FEB-12 20-APR-13
718402914 September lia 15351825258 Ap #937-3791 Metus St. Mount Prospect L 60056 Guitar 03-MAR-09 14-0CT-14
094103269 Uta Reed 12391761619 P.O. Box 527, 7610 Penatibus Rd. Munster IN 48321 Piano 08-JUL-11 19-DEC-13
380796801 Joan Ferris 15107662458 762-2790 Condimentum. St. Forest Hills NY 1375 Vocals 09-JAN-13 26-MAY-13
799516609 Alden Odysseus 13929405101 7839 Cras Ave Palm Beach Gardens FL 33410 Bass 01-MAR-11 01-SEP-13
114816401 Timon Calista 11837899028 Ap #732-3331 Cursus Avenue West Orange NJ 7052 Vocals 09-JUN-10 05-AUG-13
466691455 Lara Beau 12999436744 8780 Sapien, Street Brockton MA 2301 Vocals 11-JAN-11 18-OCT-14

913287463 Francesca Bree 11054178578 7305 Tellus St. Orland Park L 60462 Bass 04-AUG-09 11-APR-13
316632012 Isaac Leila 15351339149 P.O. Box 350, 3397 Nulla Rd. East Winona MN 55087 Drums 01-JAN-11 05-JUL-15
706388832 Cameron Tatum 11729694536 9623 Orci, Road Chardon OH 44024 Keyboard 27-MAR-10 18-JUL-14
230405066 Thaddeus Josiah 19024567204 Ap #312-5175 Magna, Rd. Yorktown VA 23693 Bass 15-0CT-12 29-JUN-13
237095808 Thaddeus Joan 17113412441 450-6815 Aliquet St. Faribault MN 55021 Drums 26-FEB-13 29-NOV-15
030529568 Daryl Jillian 12628768431 Ap #524-446 Velit. Rd. Loxahatchee FL 33470 Bass 12-APR-10 29-0CT-14
350826131 Heather Timon 13347742003 P.O. Box 843, 4176 Non Ave Indianapolis IN 46201 Drums 08-NOV-10 20-JAN-14
966728262 Berk Jelani 17901978783 Ap #122-6362 Elementum Av. Maryborough IN 48201 Drums 08-NOV-10 20-JAN-14
174635988 Shellie Kessie 14198627899 Ap #463-4485 Amet St. Saint-Honor NY 12533 Keyboard 10-MAY-12 26-0CT-15
555698350 Harding Fay 16765128361 504- usto Ave Bazel KY 42141 Bass 19-FEB-12 20-APR-13
522646239 Zenia Yvette 14372268794 796-9703 Arcu. St. Brunn am Gebirge IL 60056 Piano 03-MAR-09 14-0CT-14
033390750 Karly Ruby 11251059052 Ap #390-9509 Sed, Street Watford IN 46321 Keyboard 08-JUL-11 19-DEC-13
752640200 Tucker Kenyon 15661337495 925-6822 Elit Rd. Harelbeke NY 1375 Drums 09-JAN-13 26-MAY-13
060968225 Adam Tanisha 14337015336 P.O. Box 282, 1071 Et Ave Cleveland FL 33410 Drums 01-MAR-11 01-SEP-13
704113574 Bradley Reagan 12253670851 P.O. Box 587, 9953 In Avenue Bomal NJ 7052 Guitar 09-JUN-10 05-AUG-13
380384098 Kendall Patricia 12738381323 7443 Gravida Rd. Taunusstein MA 2301 Bass 11-JAN-11 19-0CT-14
938507878 Rahim Renee 12409485291 247 Gravida. Av. Swadlincote L 60482 Guitar 04-AUG-09 11-APR-13
080699386 Shelley Stella 11521752273 614 Tincidunt Street Sint-Stevens-Woluwe MN 55087 Vocals 01-JAN-11 05-JUL-15
445089480 Walter Ingrid 17484190250 4674 Enim. Rd. Reading OH 44024 Keyboard 27-MAR-10 18-JUL-14
694775842 Sierra Jin 16244768346 P.O. Box 393, 976 Erat, St. Campbelliown VA 23693 Bass 15-0CT-12 29-JUN-13
359684742 Abraham Quinlan 15048003789 106 Non, St. Dhuy MN 55021 Drums 26-FEB-13 29-NOV-15
022628780 Lucas Alec 11393378115 P.0. Box 105, 139 Imperdiet St. Zonhoven FL 33470 Piano 12-APR-10 29-0CT-14
727706860 Yoko Jeanetie 16788467744 P.O. Box 985, 1703 Commodo Avenue VerrA's IN 46201 Guitar 08-NOV-10 20-JAN-14
207665184 Heidi Ainsley 11048623923 P.O. Box 514, 7993 Laoreet RoadHattersheim am Main IN 48201 Guitar 08-NOV-10 20-JAN-14
727431600 Kadeem Ali 19621541797 748-7299 Scelerisque Ave Cottbus NY 12533 Vocals 10-MAY-12 26-0CT-15
835471116 Lacota Ray 13776976552 1213 Tellus Avenue Christchurch KY 42141 Keyboard 19-FEB-12 20-APR-13
681991076 Unity Fiona 13106428505 9362 Nullam Rd. Senneville L 60056 Drums 03-MAR-09 14-0CT-14
326337324 Martha Brock 16969940134 5945 Dolor Ave Barrie IN 48321 Piano 08-JuL-11 19-DEC-13
794071975 Willow Honorato 17518668220 396-1218 Donec Rd. Premeno NY 11375 Piano 08-JAN-13 26-MAY-13
0685291852 Ramona Halee 19739433237 Ap #577-904 Mauris Road West Valley City ~ FL 33410 Drums 01-MAR-11 01-SEP-13
238442093 Charles Tara 19088701080 Ap #522-7038 Vivamus St. Assebroek NJ 7052 Piano 09-JUN-10 05-AUG-13
647758371 Yoshi Anne 19523885101 P.0. Box 722, 9775 Placerat Avenue Asso MA 2301 Piano 11-JAN-11 19-0CT-14
493540743 Halla Casey 18525750692 Ap #850-5478 Facilisis Road Batiscan L 60462 Bass 04-AUG-09 11-APR-13
315185134 Fuller Brock 19291249283 P.O. Box 281, 4648 Mauris Rd.Kingston-on-Thames MN 55987 Piano 01-JAN-11 05-JUL-15
934660708 Damian Violet 17839535683 957-4329 Tortor. Street Rathenow OH 44024 Drums 27-MAR-10 18-JUL-14
103180494 Paki Ezekiel 13987708648 P.0. Box 312, 3911 Fermentum St. Berlin VA 23693 Vocals 15-0CT-12 29-JUN-13
689619138 Imogene Darius 17043880188 683-8741 Nonummy St St. Albert MN 55021 Piano 26-FEB-13 29-NOV-15
519055209 Melvin Joshua 11879813757 Ap #166-2136 Facilisis Rd. Tramonti di Sopra FL 33470 Drums 12-APR-10 29-0CT-14
130871020 Malachi Nyssa 18205375019 855-7728 Risus Av. Biggleswade IN 46201 Guitar 08-NOV-10 20-JAN-14
648377849 Noel Holly 18943263460 681-5092 Nunc Avenue Makurdi IN 48201 Drums 08-NOV-10 20-JAN-14
018387601 Martina Blythe 13385460577 439-4198 Nisl. Road Biez NY 12533 Vocals 10-MAY-12 26-0CT-15
647906445 Judith Kirby 18835144306 4565 Ante. Av. Dsseldorf KY 42141 Vocals 19-FEB-12 20-APR-13
737347478 Rhona Rashad 14446238960 P.O. Box 736, 8952 Suscipit Ave Juneau L 60056 Keyboard 03-MAR-09 14-0CT-14
043989774 Jamal Jolene 19751486231 239-6604 Nunc Av. Port Hope IN 46321 Vocals 08-JUL-11 19-DEC-13
276392123 Jaime Laurel 17332651472 Ap #835-5410 Libero Road Arrone NY 11375 Keyboard 09-JAN-13 26-MAY-13
800960314 Libby Jeremy 15374107125 P.O. Box 350, 1722 Libero Street Poitiers FL 33410 Vocals 01-MAR-11 01-SEP-13
055923612 Audra Fiona 18725601899 5953 Vel, St. Cimitile NJ 7052 Drums 09-JUN-10 05-AUG-13
3722730921 Drake Maggy 17333747345 754-5259 Orci, Rd. Montebello MA 2301 Bass 11-JAN-11 19-0CT-14
703898621 Ulla Isabelle 15198931634 960 Eget St. Wolverhampton L 60462 Piano 04-AUG-08 11-APR-13
815096438 Sonya Cheyenne 11783674775 8433 Adipiscing Avenue Paglieta MN 55987 Drums 01-JAN-11 05-JUL-15
249648859 Axel Nadine 18062981831 Ap #259-5148 Velit. Street Fort Saskatchewan OH 44024 Keyboard 27-MAR-10 18-JUL-14
539638320 Risa Rosalyn 13012349405 Ap #499-7649 Neque Av. Grand-Halleux VA 23693 Drums 15-0CT-12 29-JUN-13
985148004 Margaret Hedda 11248964998 2154 Penatibus Road Cerreto di Spolete MN 55021 Piano 26-FEB-13 29-NOV-15
355422240 Ignacia Ivory 13561342664 393-1514 Vel Rd. Blind River FL 33470 Vocals 12-APR-10 29-0CT-14
196457896 Cathleen Linus 14143301934 Ap #858-3948 Tincidunt, Road Caplan IN 46201 Guitar 08-NOV-10 20-JAN-14

69

3.3.5 Album

ALBUM_ID
ALBUM_NAME
DATE_RELEASED
UNIT_PRICE
ARTIST_ID
STUDIO_ID
START_DATE
END_DATE
HRS_WORKED

ALBUM_ID ALBUM_NAME

AL3626 Microscope
AL4620 Midget

AL2151 Credit Card
AL7741 System

AL2381 Observation
AL5377 Fork

AL5780 T-shirt

AL1803 Surgeon

AL5392 Wisdom

AL7282 Log

AL725 Laser

AL8817 Tap

AL9098 Critic

AL3881 Throne

AL4688 Hazard

ALO001 Queen

AL0002 Queen Il

AL0003 Sheer Heart Attack
AL0004 A Night at the Opera
AL0005 Day at the Races
ALO006 News of the World
AL0007 Jazz

AL0008 The Game
AL0009 Hot Space
AL0010 The Works
AL0011 A Kind of Magic
AL0012 The Miracle
AL0013 Innuendo
AL0014 Made in Heaven
ALO015 Live Killers
AL4689 Blah

NOT NULL VARCHAR2(10)
NOT NULL VARCHAR2(60)

DATE

NUMBER(6,2)
NOT NULL VARCHAR2(10)
NOT NULL VARCHAR2(10)

DATE

DATE

NUMBER(5)
DATE_REL UNIT_PRICE ARTIST_ID STUDIO_ID START_DAT END_DATE HRS_WORKED
08-FEB-11 9.99 A17813 S1262 01-JAN-11 03-FEB-11 200
07-FEB-13 12.99 A44086 S8241 17-APR-12 02-FEB-13 200
18-JUL-11 3.99 A11328 S5458 24-APR-11 11-JUL-11 300
15-APR-15 9.99 A4752 S5894 15-DEC-14 15-MAR-15 1000
26-AUG-11 7.99 A6789 S6310 15-FEB-11 20-AUG-11 200
15-JAN-15 24.99 A55390 S4552 14-SEP-14 26-DEC-14 300
24-JAN-13 2.99 A85862 S1384 18-NOV-12 14-JAN-13 500
15-DEC-14 1.99 A34728 S1099 17-NOV-14 01-DEC-14 700
25-MAY-14 7.99 A93471 S1017 13-MAR-13 18-MAY-14 800
16-AUG-11 8.99 A50643 S$2383 07-JUN-11 08-AUG-11 70
24-DEC-15 9.99 A19760 S3370 10-OCT-15 12-DEC-15 59
17-JAN-12 9.99 A53622 S4099 25-SEP-11 01-JAN-12 300
24-DEC-13 12.99 A42579 S6369 08-AUG-13 12-DEC-13 250
19-JUN-15 14.99 A96710 S3386 02-FEB-15 06-JUN-15 50000
19-JAN-13 16.99 AB7044 S126 05-OCT-12 01-JAN-13 300
08-FEB-11 9.99 A00001 S$1262 01-JAN-11 03-FEB-11 200
07-FEB-13 12.99 A00001 S8241 17-APR-12 02-FEB-13 200
18-JUL-11 3.99 A00001 S5458 24-APR-11 11-JUL-11 300
15-APR-15 9.99 A00001 S5894 15-DEC-14 15-MAR-15 1000
26-AUG-11 7.99 A00001 S6310 15-FEB-11 20-AUG-11 200
15-JAN-15 24.99 A00001 S4552 14-SEP-14 26-DEC-14 300
24-JAN-13 2.99 A00001 51384 18-NOV-12 14-JAN-13 500
15-DEC-14 1.99 A00001 S1099 17-NOV-14 01-DEC-14 700
25-MAY-14 7.99 A00001 S1017 13-MAR-13 18-MAY-14 800
16-AUG-11 8.99 A00001 52383 07-JUN-11 08-AUG-11 70
24-DEC-15 9.99 A00001 S3370 10-OCT-15 12-DEC-15 59
17-JAN-12 9.99 A00001 S4099 25-SEP-11 01-JAN-12 300
24-DEC-13 12.99 A00001 S6369 08-AUG-13 12-DEC-13 250
19-JUN-15 14.99 A00001 S3386 02-FEB-15 06-JUN-15 50000
19-JAN-13 16.99 A00001 S126 05-0CT-12 01-JAN-13 300
19-JAN-14 16.99 AB7044 S126 05-OCT-13 01-JAN-14 40

70

3.3.6 Sold_Through

TRANSACTION_ID NOT NULL VARCHAR2(10)

ALBUM_ID NOT NULL VARCHAR2(10)

BATCH_UNITS NUMBER(15)
TRANSACTION_ID ALBUM_ID BATCH_UNITS
T17813 AL3626 200000
T44086 AL4620 250000
T11328 AL2151 150000
T4752 AL7741 10000
T6789 AL2381 500000
755390 AL5377 25000
785862 AL5780 1000
734728 AL1803 100
T93471 AL5392 55000
750643 AL7282 230000
T19760 AL725 100000
753622 AL8817 1500
T42579 AL9098 2000
796710 AL3881 250
T67044 AL4688 100000
T00001 AL3626 100
T00001 AL4620 100
T00001 AL2151 100
T00001 AL7741 100
T00001 AL2381 100
T00001 AL5377 100
T00001 AL5780 100
T00001 AL1803 100
T00001 AL5392 100
T00001 AL7282 100
T00001 AL725 100
T00001 AL8817 100
T00001 AL9098 100
T00001 AL3881 100
T00001 AL4688 100
T00001 AL0001 100
T00001 AL0002 100
T00001 AL0003 100
T00001 AL0004 100
T00001 ALO005 100
T00001 AL0006 100
T00001 AL0007 100
700001 AL0008 100
T00001 AL0009 100
700001 AL0010 100
T00001 AL0011 100
T00001 AL0012 100
T00001 AL0013 100
T00001 AL0014 100
T00001 ALO015 100
T00001 AL4689 100

71

3.3.7 Transaction

TRANSACTION_ID NOT NULL VARCHAR2(10)

BUYER_ID NOT NULL VARCHAR2(10)

TDATE DATE
TRANSACTION_ID BUYER_ID TDATE
T17813 B00001 05-OCT-15
T44086 B00005 26-JUN-14
T11328 B00003 25-JUL-14
T4752 B00004 09-SEP-14
T6789 B00005 23-SEP-15
T55390 B00006 21-MAR-15
785862 B00004 21-NOV-15
T34728 B00005 18-SEP-14
T93471 B00006 10-APR-15
750643 B00005 05-AUG-14
T19760 B00005 01-APR-15
753622 B00001 21-JAN-14
T42579 B00004 30-NOV-13
T96710 B00006 19-SEP-15
T67044 B00001 05-OCT-15
T00001 B00002 01-NOV-15

3.3.8 Buyer

BUYER_ID NOT NULL VARCHAR2(10)
BUYER_NAME NOT NULL VARCHAR2(45)

PHONE VARCHAR2(11)

ADDRESS VARCHAR2(45)

CITY VARCHAR2(25)

STATE VARCHAR2(20)

ZIP VARCHAR2(6)

BUYER_ID BUYER_NAME PHONE ADDRESS CITY
B00001 FYE 14109410560 7910 Dolor. Road Tacoma
B00002 Kmart 13798752434 8617 Adipiscing Rd. West Valley City
B00003 Wal-Mart 19322717830 6554 Urna St. Boise
B00004 Costco 12499787321 4592 Aliquet. Road Aurora
B00005 Target 11843415591 1136 Id Street Chicago
B00006 Amoeba Records 14813943965 9627 Amet St. Jonesboro
B00007 The Warehouse 14634003980 4382 Augue St. Madison
B00008 Suncoast 14217367118 6594 Urna Avenue Boise
B00009 Shop Here Please 11219351648 5537 Donec Street Springfield
B00010 Dollar General 14604429430 4400 Aliquet Av. Kailua
B00011 One Stop Shop 14643488587 5161 Aenean Rd. Billings
B00012 S-Mart 16567843345 8367 Habitant St. San Diego
B00013 Quick Stop Groc. 16185947681 3545 Quisque St Saint Paul
B00014 Sears 14575679254 2714 Nunc, Street Davenport
B00015 Records R Us 16133361368 8167 Nibh. Road Baltimore

72

ZIP

25345
81502
41529
49142
34218
72604
37518
40083
91158
32090
94754
92003
69624
67485
76135

3.3.9 Song

SONG_ID NOTNULL VARCHAR2(10)

TRACK_NUMBER NUMBER(5)

SONG_NAME VARCHAR2(60)

SONG_LENGTH TIMESTAMP(6)

ALBUM_ID NOTNULL VARCHAR2(10)

WRITER_ID NOTNULL VARCHAR2(10)

SONG_ID TRACK_NUMBER SONG_NAME SONG_LENGTH ALBUM_ID
s0aas2 1 Dude Dude 01-JAN-01 12.04.06.000000000 AM AL3626
S07345 2 Shut Clock 01-JAN-01 12.05.50.000000000 AM AL3626
503375 3 Unkempt Bone 01-JAN-01 12.24.45.000000000 AM AL3626
SO8701 4 Aquatic Downtown 01-JAN-01 12.47.34.000000000 AM AL3626
S09804 5 Premium Sign 01-JAN-01 12.31.03.000000000 AM AL3626
S00740] Old-Fashion Bead 01-JAN-01 12.39.50.000000000 AM AL3626
508528 7 Neat Pigs 01-JAN-01 12.24.02.000000000 AM AL3626
S04682 a Few Crack 01-JAN-01 12.02.27.000000000 AM AL3626
508488 1 Flashy Ocean 01-JAN-01 12.09.09.000000000 AM AL3626
501533 2 Faithful Whip 01-JAN-01 12.18.45.000000000 AM AL3626
503099 3 Confused Screw 01-JAN-01 12.16.08.000000000 AM AL4620
s01814 4 Haly Hell 01-JAN-01 12.56.11.000000000 AM AL4620
S06409 1 Tent Treatment 01-JAN-01 12.45.16.000000000 AM AL4820
503550 2 Rainstorm Apples 01-JAN-01 12.24.00.000000000 AM AL4620
501839 3 Birth Soap 01-JAN-01 12.59.47.000000000 AM AL4620
S02571 4 Minute Popcorn 01-JAN-01 12.32.41.000000000 AM AL4620
S06969 5 Jewel Note 01-JAN-01 12.44.01.000000000 AM AL4620
S07506] Change Question 01-JAN-01 12.56.11.000000000 AM AL4620
505478 6 Letter Circle 01-JAN-01 12.48.26.000000000 AM AL4620
S058772 T Base Fork 01-JAN-01 12.43.20.000000000 AM AL4820
501843 a Good-Bye Meeting 01-JAN-01 12.43.02.000000000 AM AL4820
504135 g Fight Expansion 01-JAN-01 12.46.23.000000000 AM AL4620
S01915 1 Light syrup 01-JAN-01 12.21.20.000000000 AM AL4620
S02408 1 Object Book 01-JAN-01 12.36.25.000000000 AM AL4620
S00776 2 Marry Touch 01-JAN-01 12.19.30.000000000 AM AL4620
508410 3 Justify Chin 01-JAN-01 12.48.05.000000000 AM AL2151
s08202 4 Bounce Stick 01-JAN-01 12.27.08.000000000 AM AL2151
502521 5 Cheat Air 01-JAN-01 12.23.58.000000000 AM AL2151
s01231] Breed Uncle 01-JAN-01 12.09.32.000000000 AM AL2151
508531 7 Mislead Beggar 01-JAN-01 12.29.44.000000000 AM AL2151
503251 a Analyze Secretary 01-JAN-01 12.24.57.000000000 AM ALZ2151

73

WRITER_ID

wiz262
waz241
Wa241
waz241
Wwa241
wa241
wa241
Wwaz241
waz241
Wa241
wa241
wB241
waz241
wa241
Wwaz241
waa241
wa241
W5458
W5458
Wh5458
W5458
W5458
W5458
W5458
W5458
w5894
Ws894
w5894
W5894
w5894
Wh894

S03942
SO1421
809412
S04618
500885
S06835
S0B417
509423
504161
S03935
s08108
800478
S05138
803275
s02116
S03114
806665
506383
SO4064
500519
S06505
S08475
508551
S01457
S06451
508401
500623
S00892
503588
S06478
S04088
804779
500859
S03a772
807864
S07597
S00073
505223
SO1528
S06312
807996
503087
S06947
503981
509372
S02585
503545
SO7466
807763
508381
503969
SO1657
505914
S09667
SO1319
802713
S02932
502873
503144
S07803
SO1986
807525
S06298
SO1895
509648
SO7926
504249
501891
504994

I 7o
SN omomEsE Wl SO

W= U o WM = =M == 00m~Om0 W=

mummnmm—-ammummnmm—-nom-qmonnmm

JE =]
WM =0

Exercise View
Intend Approval
That’s too much
Talented Turkey
Arrogant Apples
Young Yard
Simple Scent
Ten Town

01-JAN-D1
01-JAN-D1
01-JAN-O1
01-JAN-D1
01-JAN-01
01-JAN-O1
01-JAN-O1
01-JAN-01

Comfortable Cactus 01-JAN-01

Cooing Crayon
Pricey Party
Poised Plastic
Silly Scale
Ketchup and A1
Wax War

Art Ants

Mind Minister
Mother Mice
Texture Tramp
Bread Bean
Ship Space
Prose Produce
Plough Pump
Skate Spot
Don't touch me
Ascertain Army
Jail Join
Branch Bath
Sense Slope
Search Stop
Smile Stew
Bump Beamn
Receive Reward
Sell Slope

Misunderstan Meal

Cough Range
Zipper Camp
Heat Vegetable
Clouds Disgust
Touch me

Attack Uncle
Determine Dress

01-JAN-D1
01-JAN-D1
01-JAN-O1
01-JAN-D1
01-JAN-01
01-JAN-O1
01-JAN-01
01-JAN-01
01-JAN-O1
01-JAN-D1
01-JAN-01
01-JAN-O1
01-JAN-D1
01-JAN-01
01-JAN-O1
01-JAN-D1
01-JAN-01
01-JAN-O1
01-JAN-D1
01-JAN-01
01-JAN-D1
01-JAN-D1
01-JAN-01
01-JAN-O1
01-JAN-D1
01-JAN-01
01-JAN-O1
01-JAN-D1
01-JAN-01
01-JAN-D1
01-JAN-D1
01-JAN-01
01-JAN-O1

Recommend Direct 01-JAN-01

Scream Birthday
Fax Secretary
Process Road
Sguash Pickle
Diagnose Bomb

Experiment Author

Finalize Plantation
Help me

Elite Edge

Pushy Pollution

Disillusioned Donk

Uppity Underwear
Ad Aunt

Tacit Tooth
Married Morning
Fallacious Fuel
Massive Mass
Careless Chair
It was the dog
Smoke Shame
Crate Chance
Sguare Shop
Juice Jewel
Blow Baseball
Business Beam
Stomach Shirt

01-JAN-O1
01-JAN-O1
01-JAN-D1
01-JAN-01
01-JAN-D1
01-JAN-01
01-JAN-01
01-JAN-O1
01-JAN-01
01-JAN-O1
01-JAN-O1
01-JAN-D1
01-JAN-01
01-JAN-D1
01-JAN-01
01-JAN-01
01-JAN-O1
01-JAN-01
01-JAN-O1
01-JAN-D1
01-JAN-D1
01-JAN-01
01-JAN-D1
01-JAN-01
01-JAN-O1
01-JAN-O1

12,40.25.000000000 AM
12,49.22.000000000 AM
12.24.15.000000000 AM
12,48.52.000000000 AM
12.13.50.000000000 AM
12.14.20.000000000 AM
12.39.28.000000000 AM
12.46.51.000000000 AM
12.54.39.000000000 AM
12,31.24.000000000 AM
12,28.35.000000000 AM
12.16.15.000000000 AM
12,21.13.000000000 AM
12.53.08.000000000 AM
12.41.17.000000000 AM
12.47.59.000000000 AM
12.15.46.000000000 AM
12.01.30.000000000 AM
12,51.58.000000000 AM
12.10.20.000000000 AM
12.52.16.000000000 AM
12,57.00.000000000 AM
12.55.40.000000000 AM
12.06.51.000000000 AM
12.59.34.000000000 AM
12,19.33.000000000 AM
12.29.47.000000000 AM
12,29.49.000000000 AM
12.52.46.000000000 AM
12,02.39.000000000 AM
12,09.21.000000000 AM
12.52.40.000000000 AM
12.53.48.000000000 AM
12.02.44.000000000 AM
12,32.24.000000000 AM
12.13.18.000000000 AM
12,27.36.000000000 AM
12.19.08.000000000 AM
12,10.11.000000000 AM
12,51.45.000000000 AM
12.17.16.000000000 AM
12.50.10.000000000 AM
12.41.12.000000000 AM
12.05.18.000000000 AM
12.03.05.000000000 AM
12,59.53.000000000 AM
12.03.48.000000000 AM
12,25.07.000000000 AM
12.40.34.000000000 AM
12.20.38.000000000 AM
12.59.55.000000000 AM
12.44.25.000000000 AM
12.39.28.000000000 AM
12.02.07.000000000 AM
12,10.37.000000000 AM
12.15.56.000000000 AM
12,30.55.000000000 AM
12.51.38.000000000 AM
12.22.18.000000000 AM
12.09.18.000000000 AM
12.44.41.000000000 AM
12.57.32.000000000 AM
12,16.13.000000000 AM
12,05.17.000000000 AM
12.52.50.000000000 AM
12,33.24.000000000 AM
12.52.11.000000000 AM
12.59.14.000000000 AM
12.17.37.000000000 AM

74

AL2151
AL2151
ALTT41
ALTT41
ALTT41
ALTT41
ALTT41
ALTT41
ALTT41
ALTT41
ALTT41
ALTT41
ALTT41
ALTT41
ALTT41
AL7T41
ALTT41
ALTT41
ALTT41
AL2381
AL2381
ALZ2381
AL2381
AL53T7
AL53T7
AL53T7
AL53T7
ALS3TT
AL53T7
AL1803
AL1803
AL1803
AL1803
AL1803
AL1803
AL1803
AL1803
AL1803
AL5392
AL5392
AL5392
AL5392
AL5392
AL5392
AL5392
AL5392
AL5392
AL5392
AL7282
AL7282
AL7282
ALT7282
AL7282
AL7282
AL7282
AL7282
ALT25

ALBE17
ALBE17
ALS098
ALS098
ALS098
AL3881
AL3881
AL3881
AL4688
AL4E88
AL4EB8
AL4EB8

w5884
w5884
w5894
w5884
WE310
WB310
WB310
WE310
WB310
WE310
WE310
WB310
Wabh2
Wabs2
Was52
W4552
Wabs2
Was52
Wabh2
Wabs2
Was52
Wabh2
Wabs2
w1384
w1384
w1384
w1384
w1384
w1384
w1384
w1384
w1384
w1384
w1384
w1384
w1089
w1089
w1089
w1089
w1089
w1089
w1089
w1089
w1089
w1089
w1089
w1089
w1017
w1017
w1017
w1017
w2383
w2383
w2383
Wa383
w2383
Wa383
Wa3370
Wa3370
W337o
Wa370
W337o
Wa3370
Wa3370
Wa0sg
WE369
W33B6
w126

w126

3.3.10 Studio

STUDIO_ID NOT NULL VARCHAR2(10)
STUDIO_NAME NOT NULL VARCHAR2(45)
PHONE VARCHAR2(11)
ADDRESS VARCHAR2(45)
CITY VARCHAR2(25)
STATE VARCHAR2(20)
ZIP VARCHAR2(10)
OPEN_DATE DATE
CLOSE_DATE DATE
HOURLY _COST NUMBER(6,2)
STUDIO_ID STUDIO_NAME PHONE ADDRESS CITY
S1262 Ante Maecenas Mi Limited 17863794906 681 Route 32 Indianapolis
58241 Pede Malesuada Industries 16669280290 747 2nd Street West Hopewell J.
55458 Duis Institute 15538665682 621 Main Street Glasgow
55894 Nec Euismod LLC 12491293089 458 Invemess Dr Mount Prospect
S6310 Imperdiet Ornare In Associates 16645656363 157 Williams Street Munster
54552 Magna Institute 12237234437 761 Ann Street Forest Hills
S1384 Etiam Ligula Corp. 11458115254 275 Beech Street Palm Beach Gard.
51099 Est Mauris Rhoncus Corp. 13184131114 961 Route 44 West Orange
S1017 Aenean Massa Associates 12383431057 657 Locust Street Brockton
52383 Est Mollis Non LLP 15729530248 957 Penn Street Orland Park
§3370 Eu Accumsan Sed Inc. 17498523465 209 Main Street East Winona
S$4099 Ultricies Adipiscing LLP 15742538981 613 Victoria Court Chardon
S6369 Arcu Inc. 14284134720 570 Windsor Drive Yorktown
53386 Orci Lobortis Augue Ltd 12437530311 978 Mill Street Faribault
5126 Cursus Inc. 17863794906 186 Glenwood Dr Loxahatchee

75

STATE

NY
KY
L

IN

NY
FL
NJ

L
MN
OH
VA
MN
FL

ZIP

46201
12533
42141
60056
46321
11375
33410
7052

2301

60462
55987
44024
23693
55021
33470

OPEN_DATE CLOSE_DATE HOURLY_COST
08-NOV-10 116.74
10-MAY-12 26-0CT-15 86.88
18-FEB-12 110.44
03-MAR-09 14-0CT-14 98.69
08-JUL-11 114.62
09-JAN-13 26-MAY-13 136.5
01-MAR-11 135.69
09-JUN-10 05-AUG-13 154.24
11-JAN-11 197.25
04-AUG-09 11-APR-13 135.08
01-JAN-11 05-JUL-15 171.32
27-MAR-10 180.04
15-0CT-12 29-JUN-13 97.29
26-FEB-13 93.24
12-APR-10 29-0CT-14 91.78

3.3.11 Writer

WRITER_ID NOT NULL VARCHAR2(10)

FNAME VARCHAR2(45)

LNAME VARCHAR2(45)

SSN NOT NULL VARCHAR2(9)

PHONE VARCHAR2(11)

ADDRESS VARCHAR2(45)

CITY VARCHAR2(25)

STATE VARCHAR2(20)

ZIP VARCHAR2(6)

START_DATE DATE

END_DATE DATE
WRITER_ID FNAME LNAME SSN PHONE ADDRESS cITY
w1262 Rhea Amaya 219639062 17863794906 681 Route 32 Indianapolis
waz41 Neil Christopher 217809469 16669280290 747 2nd Street West Hopewell J.
W5458 Rafael Henry 235863894 15538665682 621 Main Street Glasgow
w5894 Sarah Jorden 476350140 12491293089 458 Inverness Dr - Mount Prospect
W6310 Angela Leilani 439861590 16645656363 157 Williams Street Munster
W4552 Idola Aline 329740439 12237234437 761 Ann Street Forest Hills
w1384 Cody Yetta 166200007 11458115254 275 Beech Street Palm Beach Gard
W1099 Jermaine Wayne 578269691 13184131114 961 Route 44 West Orange
w1017 Jocelyn Patricia 478321350 12383431057 657 Locust Street Brockton
W2383 Fay Cleo 680225134 167209530248 957 Penn Street Orland Park
W3370 Sharon Hamilton 508425295 17498523465 209 Main Street East Winona
W4099 Fletcher Kristen 358643701 15742538981 613 Victoria Court Chardon
W6369 Carolyn Karen 530530524 14284134720 570 Windsor Drive Yorktown
W3386 Glenna Fatima 38077409 12437530311 978 Mill Street Faribault
w126 Rhea Amaya 576617175 17863794906 186 Glenwood Dr Loxahatchee

76

zZIP

46201
12533
42141
60056
46321
11375
33410
7052

2301

60462
55987
44024
23693
55021
33470

START_DATE END_DATE
08-NOV-10 20-JAN-14
10-MAY-12

19-FEB-12 20-APR-13
03-MAR-09 14-0CT-14
08-JUL-11

09-JAN-13 26-MAY-13
01-MAR-11

09-JUN-10 05-AUG-13
11-JAN-11 19-OCT-14
04-AUG-09

01-JAN-11 05-JUL-15
27-MAR-10 18-JUL-14
15-OCT-12

26-FEB-13 29-NOV-15
12-APR-10 29-0CT-14

3.4 SQL Queries

The following queries are translated from the Phase 2 relational algebra and relational
calculus queries.
1. Find all active artists who have recorded at Amoeba Studios.

SELECT DISTINCT art.artist_name

FROM artist art, studio s, album al, contract con

WHERE art.contract_id = con.contract_id AND
con.end_date is null AND
al.artist_id = art.artist_id AND
al.studio_id = s.studio_id AND
s.studio_name = 'Cursus Inc.'

Output:
Artist name

Shaman
Queen

2. Find all artists who have recorded at least two albums.

SELECT DISTINCT a.artist_id, a.artist_name
FROM artist a
INNER JOIN album al
ON a.artist_id = al.artist_id
WHERE a.artist_id IN (
SELECT artist_id
FROM album
GROUP BY artist_id
HAVING COUNT (*) >=2

)

Output:

Artist ID Artist Name
A1010 Led Zeppelin
A67044 Shaman
A00001 Queen

77

3. Find all writers who have only written one song.

SELECT DISTINCT w.writer_id, w.fname, w.Iname
FROM writer w
INNER JOIN song s
ON w.writer_id = s.writer_id
WHERE w.writer_id IN (
SELECT writer_id
FROM song
GROUP BY writer_id
HAVING COUNT (*) =1

)

Output:

Writer ID Fhname Lname
W127 Rhea Amaya
W1264 Rhea Amaya

4. Find a list of albums that contain only one song (singles).

SELECT distinct al.album_id, al.album_name
FROM album al
INNER JOIN song s
ON al.album_id = s.album_id
WHERE al.album_id IN (
SELECT album_id
FROM song
GROUP BY album_id
HAVING COUNT (*) =1

)

Output:
Album ID Album Name

AL1313 Coda

AL2020 | Am the Greatest Ever
AL725 Laser

ALO004 A Night at the Opera

78

5. Find albums that have at most three songs

SELECT DISTINCT al.album_id, al.aloum_name
FROM album al
INNER JOIN song s
ON al.album_id = s.album_id
WHERE al.album_id IN (
SELECT album_id
FROM song
GROUP BY album_id
HAVING COUNT (*) >=3

)

Output:

Album D Album Name
AL7741 System
AL5377 Fork
AL7282 Log
AL1803 Surgeon
AL3881 Throne
AL3627 Microscope
AL4688 Hazard
AlL4621 Midget
AL2381 Observation
AL2151 Credit Card
AL5392 Wisdom

6. Find the longest song.

SELECT s.song_id, s.song_name

FROM song s

WHERE NOT EXISTS (
SELECT s2.song_id, s2.song_length
FROM song s2
WHERE s2.song_length > s.song_length

)

Output:
Song ID Album Name
S0010 Death on Two Legs

79

7. Find the least expensive studio.

SELECT s.studio_id, s.studio_name
FROM studio s
WHERE NOT EXISTS (
SELECT s2.HOURLY_COST
FROM _studio s2
WHERE s2.hourly_cost < s.hourly _cost)

Output:
Studio ID Studio Name
S$8241 Pede Malesuada Industries

8. Find all artists who have recorded at all studios.

SELECT a.artist_id, a.artist_name

FROM artist a

INNER JOIN album al

ON al.artist_id = a.artist_id

GROUP BY a.artist_id, a.artist_name

HAVING COUNT (distinct al.studio_id) = (SELECT COUNT (*) FROM studio)

Output:
Artist id Artist name
A00001 Queen

9. Find the albums that have been purchased by every buyer.

SELECT b.buyer _id, b.buyer_name

FROM buyer b

INNER JOIN transaction t

ON b.buyer_id =t.buyer _id

INNER JOIN sold_through st

ON st.transaction_id = t.transaction_id

GROUP BY b.buyer_id, b.buyer_name

HAVING COUNT (DISTINCT st.album_id) = (SELECT COUNT (*) FROM album)

Output:
Buyer id Buyer name
BO0002 Kmart

80

10. Find the most worked on album between Jan 10% 2011 and October 379, 2013.

CREATE OR REPLACE VIEW transaction_info AS
SELECT a.album_id, a.album_name, a.hrs_worked
FROM album a
WHERE a.start_date < DATE '2013-10-03'
AND a.end_date > DATE '2011-01-10'
AND NOT EXISTS (
SELECT a2.hrs_worked
FROM album a2
WHERE a2.start_date < DATE '2013-10-03'
AND a2.end_date > DATE '2011-01-10"
AND a2.hrs_worked > a.hrs_worked

)

Output:
Album ID Album Name Hrs Worked
AL56 Physical Graffiti 8000

11. For all transactions, find the total number of album units purchased, as well as the total cost
for each transaction.

SELECT t.transaction_id, b.buyer_name, (
SELECT sum(st.batch_units)
FROM maal_sold_through st
WHERE st.transaction_id = t.transaction_id
) AS Total_units, (
SELECT sum(al.unit_price * st.batch_units)
FROM album al
INNER JOIN sold_through st
ON al.album_id = st.album_id
WHERE st.transaction_id = t.transaction_id
) AS Total_Price, t.tdate
FROM transaction t
INNER JOIN buyer b
ON b.buyer_id =t.buyer_id

Output:

Transaction ID Buyer name Total units Total price Tdate
T53622 FYE 1500 14985 21-JAN-14
T67044 FYE 100000 1699000 05-0CT-15
TO0001 Kmart 3000 31326 01-NOV-15
T11328 Wal-Mart 150000 598500 25-JUL-14
T4752 Costco 10000 99900 09-SEP-14

81

T85862
T44086
T6789

T34728
150643
119760
T55390
193471
196710

Costco
Target
Target
Target
Target
Target
Amoeba Records
Amoeba Records
Amoeba Records

1000
250000
500000
100
230000
100000
25000
55000
250

82

2990
3247500
3995000
199
2067700
999000
624750
439450
3747.5

21-NOV-15
26-JUN-14
23-SEP-15
18-SEP-14
05-AUG-14
01-APR-15
21-MAR-15
10-APR-15
19-SEP-15

Phase 4: Stored Procedures, Packages, and Triggers

4.1 Oracle PL/SQL

4.1.1 What is PL/SQL?

PL/SQL, which stands for Procedural Language extensions to SQL, is a language used by
Oracle in order to add more programming ability to the SQL language for creating more complex
objects and operations. PL/SQL has procedural language attributes such as conditions and loops
and allows declaration of constants and variables, as well as functions and error handling.
Benefits of PL/SQL

PL/SQL allows for the creation of stored procedures, functions, and triggers. These
objects are very useful because:

1. They allow for database automation. Instead of having to worry about complicated
updates and deletes, procedures can be created that will handle all of this for you

automatically, instead of having to execute the individual statements in the client, which
can be less secure.

2. If adatabase is used by many applications written in different languages, it can then be
stored in the database and then called by any of those different applications.

3. Thereis less latency, or quicker response time, when stored procedures are used.

4. A procedure can assist in creating a view by allowing for a more complex type of derived
data to become available to the user. They can also be used to check for more advanced
constraints.

5. Error handling can be stored as part of the procedure.

Control Statements
PL/SQL has a number of control statements that are very useful for creating procedures.

There are three categories of PL/SQL control statements. They are:

83

1. Conditional Selection Statement: Runs different statements for different data value.
These statements are |F and CASE.

2. Loop Statements: Run the same statements with a series of different data values. The
loop statements are the LOOP, FOR LOOP, and WHILE LOOP.

3. Sequential Control Statements: Are not necessary to PL/SQL, but can be used. The
sequential control statements are GOTO and NULL.

4.1.2 PL/SQL Syntax

Stored Procedure

Stored procedures are similar to functions, in that they are a set of stored PL/SQL
statements that can be executed any number of times. These procedures can also take in
parameters. Stored procedures are helpful in that instead of explicitly running the same series of
PL/SQL statements over and over, you can just store it once and call it as many times as
necessary, which is more efficient.

Syntax:

CREATE [OR REPLACE] PROCEDURE <procedure name> [list of parameters]
IS

<Declaration Section>

BEGIN

<procedure body>

END;

Stored Functions
A stored function is a set of PL/SQL statements that can be called by a function name.
They are almost the same as a stored procedures, except a function returns a value where it is

called. A procedure may or may not return a value.

84

Syntax:

CREATE [OR REPLACE] FUNCTION <function name> [parameters]
RETURN <return datatype>;
IS
<Declaration section>
BEGIN
<Function Body>
Return <return variable>;
EXCEPTION
<Exception section>
Return <return variable>;
END;

Packages

Packages are schema objects that are used to logically group related procedures and
functions, as well as variables. Upon grouping these items into a package, an application that is
using these subprograms only needs to know the name of the subprogram and the parameters
needed for these subprograms, and does not need to know any of the specific implementation
details. This idea is similar to prototypes and function bodies in C++.

Syntax:

CREATE PACKAGE <package name> AS
<variables and their specifications>
PROCEDURE Al

PROCEDURE A2

PROCEDURE A3

END <package name>

Triggers
Triggers are programs or procedures that are stored in the database and implicitly

executed before, after, or instead of an update, insert, or deletion. This is a method of specifying

85

certain rules, and will help to enforce these rules whenever data has been modified within a

table. The below code is a sample of how trigger syntax looks.

Syntax:

CREATE TRIGGER <trigger name>
<BEFORE | AFTER | INSTEAD OF>
<INSERT | DELETE | UPDATE>
<OF column name>

ON <table name>

FOR EACH ROW

WHEN <conditions>

BEGIN

<Desired statement go here>
END;

Cursor

A Cursor is a temporary work space created in the system memory when SQL
statements are executed. Cursors allows you to give a select statement a name, so that you can
then access the information retrieved in that select statement in some kind of procedure. There
are two types of cursors, which are explicit and implicit. Both have the same functionality but are
different in the way they are accessed.

Syntax:

CURSOR <cursor name> IS
<Desired FUNCTIONALITY>

BEGIN
OPEN <cursor name>
<BODY>
CLOSE <cursor name>
END;

86

4.2 MS SQL Server and MySQL Stored Procedures

4.2.1 Microsoft SQL Server and T-SQL

Microsoft SQL Server uses an extension of SQL called T-SQL, short for Transaction-SQL,
which, similar to PL/SQL, has a number of features that are not available with SQL, including
procedural programming and variables, which allow for the creation of stored procedures.

A major feature that T-SQL has, that differs from Oracle, is that the DELETE and
UPDATE commands both allow for the inclusion of the FROM clause which allows that usage of
JOINS, making filtering records much easier, and the deletion of records far easier than in
PL/SQL.

T-SQL Procedure

The major difference between T-SQL and PL/SQL is parameter passing. PL/SQL uses IN,
OUT, and INOUT to differentiate between different types of parameters. T-SQL uses OUT,
OUTPUT, and READONLY for this purpose, which is the same idea as what Oracle implements,
but just with different syntax. Another key difference is the use of the @ to signify the use of a
variable. T-SQL also allows the use of a SELECT statement without having to use the keyword
INTO, which PL/SQL requires when assigning SELECT results into a variable. Despite these
differences, the overall structure is very similar to that of PL/SQL.

Syntax:

CREATE { PROCEDURE | PROC } [schema_name.]procedure_name
[@parameter [type_schema_name.] datatype
[VARYING] [= default] [OUT | OUTPUT | READONLY]
, @parameter [type_schema_name.] datatype
[VARYING] [= default] [OUT | OUTPUT | READONLY]]
[WITH { ENCRYPTION | RECOMPILE | EXECUTE AS Clause }]

87

[FOR REPLICATION]

AS

BEGIN
[declaration_section]
executable_section

END;

T-SQL Function

T-SQL Functions are very similar to T-SQL procedures, in terms of syntax and semantics.
Functions in T-SQL also make use of OUT, OUTPUT, and READONLY variable types, and their
overall structure is very similar to that of PL/SQL. The symbol @ is also used throughout for

variables and parameters.

Syntax:

CREATE FUNCTION [schema_name.]function_name
([@parameter [AS] [type_schema_name.] datatype
[= default] [READONLY]
, @parameter [AS] [type_schema_name.] datatype
[= default] [READONLY]]
)
RETURNS return_datatype
[WITH { ENCRYPTION
| SCHEMABINDING
| RETURNS NULL ON NULL INPUT
| CALLED ON NULL INPUT
| EXECUTE AS Clause]
[AS]
BEGIN
[declaration_section]
executable_section
RETURN return_value
END;

88

4.2.2 MySQL Server Routines

MySQL Stored Procedure

MySQL uses what are called Routines, which are equivalent to Procedures in PL/SQL, and
are very similar to Oracle Procedures in terms of syntax and semantics, as they have the ability to
use cursors, as well as all control statements Oracle has, such as IF, ELSE, case statements, and
loops. Similar to Oracle, MySQL also allows the use of IN, OUT, and INOUT parameter passing.
And MySQL also requires that you use the keyword INTO when using SELECT in a procedure,
which Oracle also requires.

Syntax:

CREATE
[DEFINER = { user | CURRENT_USER }]
PROCEDURE sp_name ([proc_parameter],...]])
[characteristic ...]

BEGIN

routine_body

END

MySQL Function

MySQL Functions are very similar to Oracle functions, but in MySQL you cannot use OUT
or INOUT parameters. By default, all parameters are IN and this cannot be changed. This is a
major difference between Oracle, which allows the use of all three types of parameters in
functions and procedures. MySQL functions are also only allowed to return a single value.

Syntax:

CREATE
[DEFINER = { user | CURRENT USER }]
FUNCTION sp_name ([func_parameter],...]])
RETURNS type

89

[characteristic ...]
BEGIN
routine_body
End

4.3 PL/SQL Subprogram Implementations

4.3.1 Procedures

The following procedures were created for our database. They serve various functions
and are specific to our database.
Delete Album Procedure

The following procedure is used to delete an Album and all of its Songs from their
respective tables in the correct order to avoid violating referential constraints.

CREATE OR REPLACE PROCEDURE maal_delete_album(aid IN maal_album.album_id%type)
IS
BEGIN
DELETE FROM maal_song
WHERE maal_song.album_id= maal_delete_album.aid;
DELETE FROM maal_album
WHERE maal_album.album_id = maal_delete_album.aid;
COMMIT;
END;

Delete Artist Procedure
The following procedure is used to delete an Artist from the database. In order to fully
delete an Artist from the database, all albums, songs, contract information, and transaction

information must be deleted to avoid any referential constraint problems.

90

CREATE OR REPLACE PROCEDURE maal_delete_artist_proc(aid IN maal_artist.artist_id%type)
IS
BEGIN
DELETE FROM maal_song
WHERE album_id IN
(
SELECT album_id FROM maal_song
NATURAL JOIN maal_album
WHERE artist_id = maal_delete_artist_proc.aid
);
DELETE FROM maal_composed of
WHERE maal_composed_of.artist_id = maal_delete_artist_proc.aid;
DELETE FROM maal_member
WHERE ssn IN
(
SELECT ssn FROM maal_member
NATURAL JOIN maal_composed_of
WHERE maal_composed_of.artist_id = maal_delete_artist_proc.aid
);
DELETE FROM maal_sold_through
WHERE album_id IN
(
SELECT album_id FROM maal_sold_through
NATURAL JOIN maal_album
WHERE maal_album.artist_id = maal_delete_artist_proc.aid
);
DELETE FROM maal_album
WHERE maal_album.artist_id = maal_delete_artist_proc.aid;
DELETE FROM maal_contract
WHERE CONTRACT _ID IN
(
SELECT contract_id FROM maal_contract
NATURAL JOIN maal_artist
Where maal_artist.artist_id = maal_delete_artist_proc.aid
);
DELETE FROM maal_artist
WHERE artist_id = maal_delete_artist_proc.aid;
COMMIT;
END;

91

Album Sales and Average Revenue Procedure

The following procedure is used to get the total amount of revenue generated from an
album transaction purchased by a major retailer distributor. This procedure also retrieves the
average transaction revenue.

CREATE OR REPLACE PROCEDURE MAAL_Get_Sales_Average
IS

--DECLARE

revenue number(20);
total number(20) :=0;
counts number(10);
average number(20,4);

Cursor curl is
select transaction_id, album_id, batch_units
from maal_sold_through;

v_ST transid maal_SOLD_THROUGH.transaction_id%type;
v_ST albumid maal_SOLD_THROUGH.album_id%type;
v_ST batch maal_SOLD_THROUGH.batch_units%type;
v_a_unit maal_ALBUM.unit_price%type;

Cursor cur2 is
select album_id, unit_price
from maal_album;

v_T album maal_album.album_id%type;
v_T_unit_price maal_album.unit_price%type;

BEGIN
select count(transaction_id) into counts from MAAL_sold_through;
dbms_output.put_line(RPAD('TransID',15,"") | | RPAD('albumID',15,"') | | RPAD('Batch',15,"")
| | RPAD('Revenue’,15,""));
dbms_output.put_line(' ";
OPEN curl;
LOOP
fetch curl intov_ST transid, v_ST albumid, v_ST batch;
exit when curl%NOTFOUND;
OPEN curz;
LOOP

92

fetch cur2 intov_T album, v_T_unit_price;
exit when cur2%NOTFOUND;
if v._ST albumid =v_T_album then
revenue := (v_T_unit_price * v_ST batch);
end if;
End LOOP;
CLOSE cur2;
dbms_output.put_line(RPAD(v_ST transid,15,"'') | | RPAD(v_ST_albumid,15,"") | |
RPAD(v_ST batch,15,"') | | RPAD(revenue,15,""));
total := (total + revenue);
--dbms_output.put_line(RPAD('Total Revenue', 15, '') | | RPAD(total,15,""));
END LOOP;
CLOSE curi;
dbms_output.put_line(' ";
average := (total / counts);
dbms_output.put_line(RPAD('Average Revenue',20,'") | | RPAD(average,15,'"));
end;

Insert Contract Procedure

The following procedure is used to insert a new Contract into the Contract relation.

CREATE OR REPLACE PROCEDURE maal_insert_contract
(
CON_ID IN VARCHAR2,
ALTERMS IN NUMBER,
SDATE IN DATE,
EDATE IN DATE
)
AS
BEGIN
INSERT INTO maal_contract
VALUES
(
CON_ID,
ALTERMS,
SDATE,
EDATE
);

END maal_insert_contract;

93

4.3.2 Triggers

Album ID Update Trigger

The following trigger is execute when you attempt to update the primary key
Album_ID. The new value will be updated everywhere else it is referenced as a foreign key.
CREATE OR REPLACE TRIGGER maal_alupdate

AFTER UPDATE OR INSERT ON maal_album
FOR EACH ROW

BEGIN
UPDATE maal_song set maal_song.ALBUM_ID = :NEW.album_id
WHERE maal_song.album_id = :0LD.album_id;
UPDATE maal_sold_through set ALBUM_ID = :NEW.album_id
WHERE maal_sold_through.album_id = :0OLD.album_id;

END;

Album Info View Update Trigger

The following trigger is used when you attempt to update data on the Album_Info view
in the database. Instead of updating the view, this trigger instead uses the new values to insert
into the base tables that the view uses to draw data from.
CREATE OR REPLACE TRIGGER maal_update_album_info

INSTEAD OF UPDATE ON maal_album_info
FOR EACH ROW

BEGIN
UPDATE maal_album
SET album_id=:NEW.album_id, aloum_name=:NEW.album_name, date_released=
:NEW.date_released
WHERE album_id = :0OLD.album_id;
UPDATE maal_song
SET track_number=:NEW.track_number, song_name=:NEW.song_name
WHERE album_id = :OLD.album_id;
COMMIT;
END;

94

Writer ID Update Trigger

This trigger is used when you attempt to update a writer_id, which is the primary key of
the Writer relation. This trigger will update this value everywhere it is referenced as a foreign key
in the database.

CREATE OR REPLACE TRIGGER maal_writer_update

AFTER UPDATE ON maal_writer

FOR EACH ROW

BEGIN
UPDATE maal_song set maal_song.writer_id = :NEW.writer_id
WHERE maal_song.writer_id = :OLD.writer_id;

END;

Delete Transaction Triggers

The following triggers are used together in order to do three things. First, upon
attempting to delete a Transaction record, all Sold_Through records associated with that specific
Transaction will also be deleted. After this has occurred, the second two triggers will be
executed, which will back up this deleted data into two log tables created specifically for this
operation.

CREATE OR REPLACE TRIGGER maal_trans_delete
BEFORE DELETE ON maal_transaction
FOR EACH ROW
BEGIN
DELETE FROM maal_sold_through
WHERE maal_sold_through.transaction_id = :OLD.transaction_id;
END;

CREATE OR REPLACE TRIGGER maal_trans_delete log
AFTER DELETE ON maal_transaction
FOR EACH ROW
BEGIN
INSERT INTO maal_transaction_log
VALUES (:OLD.transaction_id, :OLD.buyer _id, :OLD.tdate,sysdate);

95

END;

CREATE OR REPLACE TRIGGER maal_sold_Through_delete_log
AFTER DELETE ON maal_sold_through
FOR EACH ROW
BEGIN
INSERT INTO maal_sold_through_log
VALUES (:OLD.TRANSACTION_ID, :OLD.ALBUM_ID, :OLD.batch_units, sysdate);
END;

96

Phase 5: Graphical User Interface

5.1 User Groups

5.1.1 Executive Assistants

Executive assistants group will use this database at any location in order to gather
information on new artists that have been contracted out, as well as the amount of terms they
have been assigned to. They gather this information for higher-up executives as well as for
financial purposes.

Daily Activities:
The daily activities of executive assistants are as follows:

e Retrieve contract information for artists currently working for company.
e Retrieve album information, especially cost to make album
e Assign or change studios for albums being recorded.

e Search for information needed for executives, such as financial information, and overall

information on the hiring of artists by contract.

View
The views executive assistants would need to access are as follows:

e ARTIST_CONTRACT INFO
e CURRENT_CONTRACT REPORT

e MEMBER_GEN_INFO

97

5.1.2 Artists

The artist group will use this database in order to keep informed with their current
albums and track listings, as well as their current studio that they will be working at. The group

will have the ability to view and add/update members.

Daily Activities:

The daily activities for this

e View current albums that they have released or are currently working on

e The number of albums left under their current contract with the company.

Views

The views that Artist would need to access are as follows:

e ARTIST_CONTRACT_INFO

e ALBUM_SONG

98

5.2 GUI Design and Development in Java

Both of us have had a little experience with Java prior to us starting the database project.
This allowed us to ease into the developer tool called NetBeans, which is an IDE that can be used
for application development. We began by looking into internet resources as well as online
tutorials for help on how to develop a simple user interface. Once we were able to get a few
examples down, we began to work out a layout that we would use for the database GUI. The
steps and we took are as follows:

1. We brainstormed ideas on what the user interface should allow the user to do. We then

drew several diagrams on paper and did quick implementations in NetBeans to see the
practicality of those designs and ideas. We thought of a few ideas on how to display the

information and how the user could access the information.

2. Once we found a layout that we both liked, we moved forward and began to implement

the final design in NetBeans.

3. We designed two reports for the GUI. One report is designed to print Aloum information,

and the other is designed for printing Contract information.

We learned that even though we had an IDE to help us navigate our GUI, it would not always
turn out the way we had hoped. There were many times where a GUI design would look fine
during development, but when we would test the application, text fields and labels would start
to move in different places.

Pulling data from a table and display it through a GUI was a main goal, and then display

information in different areas based off of their relations. We learned that if our prepared

99

statements did not currently match our data model, our queries would fail and leave us with no
information.

There are many components that can be added to the database, but for the purpose of this
project, we wanted to limit the amount information for now. This can later be fixed by adding

more.

100

5.3 Major Features

The below code is used to connect to our database, and add values to the current
selected table. We use the prepared statements to insert or update values as they are passed to

text fields in the GUI

5.3.1 Connecting to the Oracle Database

This code allows us to establish a connection to the CSUB Delphi database. We first
create a Connection class and specify the credentials needed to connect. An instance of this class
is used in the main Menu class and the function getDBConnection() is called to connect to the

database before every SQL statement execution.

public class OracleConnect {
Connection con = null;

public OracleConnect() {

¥
public Connection getDBConnection() {
try {
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
Connection con = DriverManager.getConnection("jdbc:oracle:thin:@delphi,cs.csubak.edu:1521:dbs01", “cs342", "c3mdp2s”);
return con;

} catch (Exception e) {
JOptionPane.showMessageDialog(null, e.toString());
return null;

101

5.3.2 Inserting into Database

The following code is an example of an insertion into the Contract and Artist tables.
This code is executed when the Save button is clicked on the Contract Information panel. This
code pulls text from all the appropriate text fields and uses a Prepared Statement to set up a SQL

Insert statement to insert a new Contract and Artist into the database.

con = OracleCon.getDBConnection();
String contract_id = contractIDField.getText();
String artist_id = artistIDField.getText();
String artist_name = artistNameField.getText();
String genre = genreField.getText();
int album_terms = Integer.parseInt(albumTermsField.getText());
String start_date = startDateField.getText();
start_date = convertDateFormat(start_date);
String end_date = endDateField.getText();

if(end_date.charAt(@)==" ")

end_date = "";

else

end_date = convertDateFormat(end_date);

String insert = "Insert into maal_contract values(7,7,7,7)";

pst = con.prepareStatement(insert);
pst.setString(1, contract_id);
pst.setInt(2, album_terms);
pst.setString(3, start_date);
pst.setString(4, end_date);
pst.executeUpdate();

insert = "Insert into maal_artist values (?,7,7,7)";
pst = con.prepareStatement(insert);

pst.setString(1, artist_id);

pst.setString(2, contract_id);

pst.setString(3, artist_name);

pst.setString(4, genre);

pst.executeUpdate();

102

5.3.3 Row Filtering For Searching

The below code is used to filter table results in the table. When a user wants to search
for a specific attribute, they can use the search text field to narrow down information. The data
is filtered by each letter entered. For example, the letter "A" will filter fields that contain the
letter "A". By typing "Ab", the search will filter fields that contain the combination "Ab" and so

on.

private void contractSearchFieldKeyPressed(java.awt.event.KeyEvent evt) {

String target = contractSearchField.getText();

TableRowSorter<TableModel> sorter = new TableRowSorter<TableModel>(artistTable.getModel());
artistTable.setRowSorter(sorter);
sorter.setRowFilter(RowFilter.regexFilter(".+"+target+".+"));

103

5.3.4 Assigning Studios to Albums

A major feature of our GUI is the ability to assign a Studio to an Album. Using a JDialog
form, when a user is entering in Aloum information, you have the ability to click on
“Change/Assign Studio” which will open the JDialog form. In this JDialog form, you can add a new
Studio if the Album was recorded at a Studio that does not currently exist in the database, or
search for the already existing Studio and click “Choose Studio” to assign that Studio to the

Album that is currently be entered or edited.

| File View Print

Artist ID | Contract ID | Artist Name | Genre | Album Te... | SSN | First | Last | Phone | Address
A34728 C34728 Colette Alternati... 2 1031804... Noel Ezekiel 139877086... P.0.Box 312, 39
A93471 C93471 Adena Folk 4 6896191... Imogene Darius 170438801... 683-8741 Nonum
: B ‘vin Joshua 118798137... Ap #166-2136 Fa
L Studios achi Nyssa 192053750... 855-7728 Risus A
Searcht I 189432634... 681-5092 Nunc A
Studio... | Studio Name | Phone | Address | City | state | zip | Open ... | Close ... | Hourly C...
SIUYY — ESUNE@UITS KNOMC: L5160 YOI Koo WESTo 1V 7USZ UYL USAUL %% L
$2383 Est Mollis Non LLP 1572... 957 P... Orlan... IL 60462 04-Au... 11-A... 135.08

33410 O01-M... 135.69
55987 0Ol-ja... 05-jul... 171.32

S1384 Etiam Ligula Corp. 1145... 2758B... Palm...
S3370 Eu Accumsan Se... 1749... 209 M... EastW...

Imperdiet Ornar... | 1664... 157 W... Munster IN 46321 08-Jul...
$4552 Magna Institute 1223... 761 A... Forest... NY 11375 09-Ja...
S5894 Nec Euismod LLC ~ 1249... 458 In... Mount... IL 60056 03-M... — —
$3386 OrciLobortis Au... 1243... 978 M... Faribault MN 55021 26-Fe... Album ID AL8817 ArtistID A53622
$8241 Pede Malesuada... 1666... 747 2... West... NY 12533 10-M... 26-Oc... 86.88
S4099 Ultricies Adipisci... 1574... 613 V... Chardon OH 44024 27-M... 180.04 Album Name Tap
<« T¥»
Date Released 01/17/2012 Price $§ 9.99
Studio ID S6310 Open Date 7/08/2011 l New } Edit
S Studio ID S4099 Hours Worked 300
Studio Name :t Ornare In Associates Close Date / /
— Start Date 09/25/2011 End Date 01/01/2012
Phone | _664-565-6363 Hourly Cost § 114.62 [Save]
[Change/Assign Studio
Address | 157 Williams Street
Choose Studio —
City Munster Edit
State IN Zip 46321 (F—
Save Delete

104

Through the use of static variables, whenever a JDialog is created, the JDialog is able to
access and change data in the Menu frame, which allows for simple communication between the
JDialog and the Menu frame, which allows for assigning Studios to Albums.

public static S5tring stndieoChosen:
public static boolean studioWindow = false;

public static boolean writerWindow = false;
public static String writerChosen;

private void formWindowGainedFoons (java.awt.event.WindowEvent evt) {

if (studioWindow)

{
System.out.println(studioChossn) ;
if (! (studioChosen.isEmpty () && !studiclDField.getText().isEmptv()))
studioIDField.setText [(studioChosen) ;

studioWindow = false;

if (vriterWindow)
{
Syatem. out.println(vriterChosen) ;
if (! (vriterlhosen.isEmpty () && !writerIDField.getText().isEmptv())})

7 IDField.=setText (vriterChosen) ;

e
=

vriterfindow = false;

When focus is gained on the Menu frame, that means that the JDialog has completed
its task, and a Studio has been chosen. So it will automatically pull the string data from the static
variable that has been assigned a value in the JDialog, and it will use it to fill the proper

JTextField.

105

5.3.5 Assigning Writers to Songs

A major feature of our GUI is the ability to assign a Songwriter to a Song. Using a JDialog

form, when a user is entering in Song information, you have the ability to click on

“Change/Assign Writer” which will open the JDialog form. In this JDialog form, you can add a new

Writer if the Song was written by a Songwriter that does not currently exist in the database, or

search for the already existing Songwriter and click “Choose Writer” to assign that writer to the

song that is currently be entered or edited.

File View Print

Contracts

ArtistID | Contract ID | Artist Name | Genre | Album Te.... | SSN | First | Last | Phone | Address
A34728 (34728 Colette Alternati... 2 | 1031804... Noel Ezekiel 139877086... P.0.Box 312, 391
® Songwriters ogene Darius 170438801... 683-8741 Nonum|
alvin Joshua 118798137... Ap #166-2136 Fa|
lachi Nyssa 192053750... 855-7728 Risus A
el Holly 189432634... 681-5092 Nunc A
Search:
Writer ID | First Name | Last Name | SSN | Phone | Address | City
W1099 Jermaine Wayne 578269691 13184131... 961 Route 44 West Orang 4
W1017 Jocelyn Patricia 478321350 12383431... 657 Locust Street Brockton
W2383 | Fay Cleo 680225134 15729530... 957 Penn Street Orland Parl
W3370 Sharon Hamilton 508425295 17498523... 209 Main Street East Winon:
W4099 Fletcher Kristen 358643701 15742538... 613 Victoria Court Chardon
W6369 Carolyn Karen 530530524 14284134... 570 Windsor Drive Yorktown |y m
eI P ~mnmmann srmony " e IS S02873 Album ID | AL8817
S03144
Writer ID W2383 SSN 680-22-5134 Track No. |3 Song ID 503144
First Fay Last | Cleo Song Name Fallacious Fuel
Phone |-572-953-0248 e 218 |
New Edit
Address 957 Penn Street
Writer ID W3370
City Orland Park
Save [Change /Assign Writer]
State IL Zip 60462
Save

This is implemented in the exact same way as when an Album is assigned a Studio. By

using static varibles, the JDialog and the Menu frame are able to communicate and pass data

between the two objects.

106

5.3.6 Generated Reports

A major feature of our GUI is the ability to generate reports. For a generated report, the
user has the option of either selecting a single artist and displaying the contract information
related to that artist, or they can print all available contracts under the company. This
information is displayed in a separate window for readability. Our reports are generated using a
plugin for NetBeans called Jasper reports. The image below is a contract report generated for a

single contract and artist.

Armenlane Records

contrACTID C55390 artistio A55390 ARTIST NAME Linus
Albums on Contract 5 Contract Start 22-0ct-13 Contract End Date null
First Last SSN Phone Address City State Zip Instrument SDate EDate
Walter Ingrid 445089490 17484190250 4674 Enim.Rd. Reading OH 4402 Keyboard 27-Mar- 18-jul-14
4 10
Sierra Jin 694775842 16244768346 2-0- Box 393, 976 Erat,Campbelltasa %369 Bass lg-Oct- 29-Jun-13
t. wn 1
Abraham Quinlan 359684742 15048003789 106 Non, St. Dhuy MN 5502 Drums 26-Feb- 29-Nov-15
1 13
Lucas Alec 022628780 11393378115 P.0.Box 105,139 Zonhoven FL 3347 Piano 12-Apr- 29-Oct-14
Imperdiet St. 0 10
Yoko Jeanette 727706860 16788467744 P.O.Box 985,1703 wverrA"s IN 4620 Guitar 08-Nov- 20-Jan-14
Commodo Avenue 1 10
CGenerated on Wed Nov 18 12:12:26 PST Page 1 of 1

107

Jasper Report utilizes HashMaps in order to take in parameters to fill in the XML
reports based on a specified query. So for the Contract report, the Contract ID of the selected
artist is passed in to the report when it is generated. This allows the report to be dynamic and

change based on the users selection.

int temp = artistTable.getSelectedRow():
if (temp >= 0) {
try {
if (memberCount>0) {

con = OracleCon.getDBConnection():

String user = contractIDField.getText ()
HashMap map = new HashMap():
map.put ("CID", user):

JasperPrint jp = JasperFillManager.fillReport(getClass().getResourcelAsStream("currentContractieport.jasper"), map, con);
JasperViewer.vievReport (jp, false);

con.close():

if (memberCount==0)

String user contractIDField.getText ()

HashMap map new HashMap():

map.put ("CID", user):

JasperPrint jp = JasperFillManager.fillReport(getClass().getResourcehsStream("currentContractBeportiioMenber.jasper™), map, con);
JasperViewer.vievReport (jp, false);

con.close():

} catch (Exception e) {
System.out.println{e.toString());

108

5.4 Outcome

In conclusion, we learned that if we had an issue that could not immediately be solved,
outside sources or communication with each other is needed. We also learned that
collaborating with a partner allows for a better design. Communication with each other is key

when designing and operating a database.

From a technical aspect, we learned how databases are designed and implemented in
great detail. We were able to explore databases from initial design, to implementation and GUI
development. This covered several large topics, and we were able to get experience in all of

them.

Members' Outcome

Outcome Answers btw 1 & 10

(3b) An ability to analyze a problem, and identify and define
the computing requirements and specifications appropriate to =~ Member 1: 10

its solution.

Member 2: 10
(3e) An ability to design, implement and evaluate a computer-
based system, process, component, or program to meet
desired needs. An ability to understand the analysis, design, Member 1: 10
and implementation of a computerized solution to a real-life
problem. Member 2: 10

(3f) An ability to communicate effectively with a range of
audiences. An ability to write a technical document such as a Member 1: 10
software specification white paper or a user manual.

Member 2: 10

(3j) An ability to apply mathematical foundations, algorithmic
principles, and computer science theory in the modeling and
design of computer-based systems in a way that demonstrates Member 1: 10
comprehension of the tradeoffs involved in design choices.
Member 2: 10

109

