Logistic Regression
Why use logistic regression?

- There are many important research topics for which the dependent variable is "limited."
- For example: voting, morbidity or mortality, and participation data is not continuous or distributed normally.
- Binary logistic regression is a type of regression analysis where the dependent variable is a dummy variable: coded 0 (did not vote) or 1 (did vote)
The Linear Probability Model

In the OLS regression:

\[Y = \gamma + \beta X + e ; \text{ where } Y = (0, 1) \]

- The error terms are heteroskedastic
- \(e \) is not normally distributed because \(Y \) takes on only two values
- The predicted probabilities can be greater than 1 or less than 0
Q: EVAC

Did you evacuate your home to go someplace safer before Hurricane Dennis (Floyd) hit?

1 YES
2 NO
3 DON'T KNOW
4 REFUSED
The Data

<table>
<thead>
<tr>
<th>EVAC</th>
<th>PETS</th>
<th>MOBLHOME</th>
<th>TENURE</th>
<th>EDUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>20</td>
<td>12</td>
</tr>
</tbody>
</table>
OLS Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>0.190</td>
<td>2.121</td>
</tr>
<tr>
<td>PETS</td>
<td>-0.137</td>
<td>-5.296</td>
</tr>
<tr>
<td>MOBLHOME</td>
<td>0.337</td>
<td>8.963</td>
</tr>
<tr>
<td>TENURE</td>
<td>-0.003</td>
<td>-2.973</td>
</tr>
<tr>
<td>EDUC</td>
<td>0.003</td>
<td>0.424</td>
</tr>
<tr>
<td>FLOYD</td>
<td>0.198</td>
<td>8.147</td>
</tr>
<tr>
<td>R^2</td>
<td>0.145</td>
<td></td>
</tr>
<tr>
<td>F-stat</td>
<td>36.010</td>
<td></td>
</tr>
</tbody>
</table>
Problems:

Predicted Values outside the 0,1 range

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstandardized Predicted Value</td>
<td>1070</td>
<td>-.0849</td>
<td>.7602</td>
<td>.242990</td>
<td>.1632534</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>1070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Heteroskedasticity

Dependent Variable: LNESQ
B t-stat
(Constant) -2.34 -15.99
LNTNSQ -0.20 -6.19

Park Test
The Logistic Regression Model

The "logit" model solves these problems:

\[\ln\left(\frac{p}{1-p}\right) = \alpha + \beta X + e \]

- \(p \) is the probability that the event Y occurs, \(p(Y=1) \)
- \(\frac{p}{1-p} \) is the "odds ratio"
- \(\ln[p/(1-p)] \) is the log odds ratio, or "logit"
More:

- The logistic distribution constrains the estimated probabilities to lie between 0 and 1.
- The estimated probability is:

\[p = \frac{1}{1 + \exp(-\alpha - \beta X)} \]

- If you let \(\alpha + \beta X = 0 \), then \(p = 0.50 \)
- As \(\alpha + \beta X \) gets really big, \(p \) approaches 1
- As \(\alpha + \beta X \) gets really small, \(p \) approaches 0
Comparing LP and Logit Models
Maximum Likelihood Estimation (MLE)

- MLE is a statistical method for estimating the coefficients of a model.
- The likelihood function (L) measures the probability of observing the particular set of dependent variable values \((p_1, p_2, ..., p_n) \) that occur in the sample:
 \[
 L = \text{Prob} (p_1 \ast p_2 \ast \ast \ast p_n)
 \]
- The higher the L, the higher the probability of observing the ps in the sample.
- MLE involves finding the coefficients \((\alpha, \beta)\) that makes the log of the likelihood function \((LL < 0)\) as large as possible

- Or, finds the coefficients that make \(-2\) times the log of the likelihood function \((-2LL)\) as small as possible

- The maximum likelihood estimates solve the following condition:

\[
\{Y - p(Y=1)\}X_i = 0
\]

summed over all observations, \(i = 1,\ldots, n\)
Classification

- **Learn**: \(h: X \rightarrow Y \)
 - \(X \) – features
 - \(Y \) – target classes

- Suppose you know \(P(Y | X) \) exactly, how should you classify?
 - Bayes classifier:

- Why?
 \[
y^* = h_{\text{bayes}}(x) = \arg \max_y P(Y = y | X = x)
\]
Generative vs. Discriminative Classifiers - Intuition

- Generative classifier, e.g., Naïve Bayes:
 - Assume some functional form for $P(X \mid Y), P(Y)$
 - Estimate parameters of $P(X \mid Y), P(Y)$ directly from training data
 - Use Bayes rule to calculate $P(Y \mid X=x)$
 - This is ‘generative’ model
 - Indirect computation of $P(Y \mid X)$ through Bayes rule
 - But, can generate a sample of the data, $P(X) = \sum_y P(y)P(X \mid y)$

- Discriminative classifier, e.g., Logistic Regression:
 - Assume some functional form for $P(Y \mid X)$
 - Estimate parameters of $P(Y \mid X)$ directly from training data
 - This is the ‘discriminative’ model
 - Directly learn $P(Y \mid X)$
 - But cannot sample data, because $P(X)$ is not available
The Naïve Bayes Classifier

- Given:
 - Prior $P(Y)$
 - n conditionally independent features X given the class Y
 - For each X_i, we have likelihood $P(X_i | Y)$

- Decision rule:

 $$ y^* = h_{NB}(x) = \arg \max_y P(y)P(x_1, ..., x_n | y) $$

 $$ = \arg \max_y P(y)\prod P(x_i | y) $$

- If assumption holds, NB is optimal classifier!
Logistic Regression

- Let X be the data instance, and Y be the class label: Learn $P(Y \mid X)$ directly
 - Let $W = (W_1, W_2, \ldots, W_n)$, $X=(X_1, X_2, \ldots, X_n)$, WX is the dot product
 - Sigmoid function:
 \[
 P(Y = 1 \mid X) = \frac{1}{1 + e^{-wx}}
 \]
Logistic Regression

- In logistic regression, we learn the conditional distribution $P(y \mid x)$.
- Let $p_y(x; w)$ be our estimate of $P(y \mid x)$, where w is a vector of adjustable parameters.
- Assume there are two classes, $y = 0$ and $y = 1$ and

$$p_1(x; w) = \frac{1}{1 + e^{-wx}} \quad p_0(x; w) = 1 - \frac{1}{1 + e^{-wx}}$$

- This is equivalent to

$$\log \frac{p_1(x; w)}{p_0(x; w)} = wx$$

- That is, the log odds of class 1 is a linear function of x.
- Q: How to find w?
Constructing a Learning Algorithm

- The conditional data likelihood is the probability of the observed Y values in the training data, conditioned on their corresponding X values. We choose parameters w that satisfy

$$w = \arg \max \prod_l P(y^l | x^l, w)$$

- where $w = <w_0, w_1, ..., w_n>$ is the vector of parameters to be estimated, y^l denotes the observed value of Y in the lth training example, and x^l denotes the observed value of X in the lth training example.
Equivalently, we can work with the log of the conditional likelihood:

\[
\mathbf{w} = \arg \max_{\mathbf{w}} \sum_{l} \ln P(y^l \mid \mathbf{x}^l, \mathbf{w})
\]

This conditional data log likelihood, which we will denote \(l(\mathbf{w}) \) can be written as

\[
l(\mathbf{w}) = \sum_{l} y^l \ln P(y^l = 1 \mid \mathbf{x}^l, \mathbf{w}) + (1 - y^l) \ln P(y^l = 0 \mid \mathbf{x}^l, \mathbf{w})
\]

Note here we are utilizing the fact that \(Y \) can take only values 0 or 1, so only one of the two terms in the expression will be non-zero for any given \(y^l \).
Computing the Likelihood

- We can re-express the log of the conditional likelihood as:

\[
l(w) = \sum_l y^l \ln P(y^l = 1 | x^l, w) + (1 - y^l) \ln P(y^l = 0 | x^l, w)
\]

\[
= \sum_l y^l \ln \frac{P(y^l = 1 | x^l, w)}{P(y^l = 0 | x^l, w)} + \ln P(y^l = 0 | x^l, w)
\]

\[
= \sum_l y^l (w_0 + \sum_{i=1}^n w_i x^l_i) - \ln(1 + \exp(w_0 + \sum_{i=1}^n w_i x^l_i))
\]
Fitting LR by Gradient Ascent

- Unfortunately, there is no closed form solution to maximizing \(l(w) \) with respect to \(w \). Therefore, one common approach is to use gradient ascent.
- The \(i \)th component of the vector gradient has the form:

\[
\frac{\partial}{\partial w_i} l(w) = \sum_l x_i^l (y^l - \hat{P}(y^l = 1| x^l, w))
\]
Fitting LR by Gradient Ascent

Given this formula for the derivative of each w_i, we can use standard gradient ascent to optimize the weights w. Beginning with initial weights of zero, we repeatedly update the weights in the direction of the gradient, changing the ith weight according to

$$w_i \leftarrow w_i + \eta \sum_l x_i^l (y^l - \hat{P}(y^l = 1|x^l, w))$$
Regularization in Logistic Regression

- Overfitting the training data is a problem that can arise in Logistic Regression, especially when data has very high dimensions and is sparse.

\[w = \arg \max_w \sum_l \ln P(y^l | x^l, w) - \frac{\lambda}{2} \| w \|^2 \]

- One approach to reducing overfitting is regularization, in which we create a modified “penalized log likelihood function,” which penalizes large values of \(w \).
Regularization in Logistic Regression

- The derivative of this penalized log likelihood function is similar to our earlier derivative, with one additional penalty term

\[
\frac{\partial}{\partial w_i} l(w) = \sum_l x_i^l (y_i^l - \hat{P}(y_i^l = 1| x_i^l, w)) - \lambda w_i
\]

- which gives us the modified gradient descent rule

\[
w_i \leftarrow w_i + \eta \sum_l x_i^l (y_i^l - \hat{P}(y_i^l = 1| x_i^l, w)) - \eta \lambda w_i
\]
Summary of Logistic Regression

- Learns the Conditional Probability Distribution $P(y \mid x)$
- Local Search.
 - Begins with initial weight vector.
 - Modifies it iteratively to maximize an objective function.
 - The objective function is the conditional log likelihood of the data – so the algorithm seeks the probability distribution $P(y \mid x)$ that is most likely given the data.
What you should know LR

- In general, NB and LR make different assumptions
 - NB: Features independent given class -> assumption on \(P(X | Y) \)
 - LR: Functional form of \(P(Y | X) \), no assumption on \(P(X | Y) \)
- LR is a linear classifier
 - decision rule is a hyperplane
- LR optimized by conditional likelihood
 - no closed-form solution
 - concave -> global optimum with gradient ascent