This exam contains 7 pages (including this cover page) and 6 problems. Check to see if any pages are missing. Enter all requested information on the top of this page, and put your initials on the top of every page, in case the pages become separated.

You may not use your books, notes, or any computer/cell phone/tablet/etc. on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

- **You are allowed to have one cheat sheet.** You may write on both sides. The paper must be 8.5x11 inches. You must turn in your cheat sheet at the end of the test. It must have your name on it.

- **An ID is required.** You will not be able to turn in the test unless you show a photo ID.

- **Mysterious or unsupported answers will not receive full credit.** A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.

Do not write in the table to the right.

VERSION 2
1. The following question pertains to CRC checksums.

 (a) (3 points) Consider the following generator:

 \[x + 1 \]

 Given the following bit sequence: 1111, what is the CRC checksum value?

(b) (3 points) Consider the following generator:

 \[x^2 + 1 \]

 Given the following bit sequence: 01100, what is the CRC checksum value?

(c) (3 points) Consider the following generator:

 \[x^5 + x^2 + x + 1 \]

 Given the following bit sequence: 0110111, what is the CRC checksum value?
2. The following questions pertain to ALOHA and slotted ALOHA.

 (a) (2 points) The equation of a Poisson distribution is:

 \[P(k) = \frac{G^k e^{-G}}{k!} \]

 In a given time frame, what is the probability that 0 frames are generated in a time frame where 10 frames are expected?

 (b) (3 points) Following the above equation, explain why the vulnerability window for pure ALOHA is \(Ge^{-2G} \).

 (c) (3 points) What is the throughput of slotted ALOHA if we anticipate 50 other frames in the time slot?
3. The following are true or false questions about wireless communication, CSMA/CD and CSMA/CA. Write true or false.

(a) (1 point) __________ The IEEE standard for wireless is IEEE 802.3.
(b) (1 point) __________ 802.11 uses radio.
(c) (1 point) __________ Generally, a wireless host cannot send and sense at the same time.
(d) (1 point) __________ Wireless has a pre-backoff before sending, and a post-backoff from collisions.
(e) (1 point) __________ 802.11 frames must be encrypted.
(f) (1 point) __________ 802.11a came before 802.11b.
(g) (1 point) __________ The hidden terminal problem is when a host sees a frame being sent but it cannot tell who the recipient is.
(h) (1 point) __________ The length of time to send data after a CTS is fixed.
(i) (1 point) __________ After a successful RTS and CTS frame, the channel is seized.
(j) (1 point) __________ Ad-hoc mode uses access points.
(k) (1 point) __________ 802.11 frames headers contain three addresses.
(l) (1 point) __________ A wireless access point/bridge requires an IP address.
(m) (1 point) __________ Power spread spectrum allowed hosts to unevenly allocated bandwidth across different channels.
(n) (1 point) __________ Power spread spectrum held back the development of 802.11.
(o) (1 point) __________ With later 802.11 protocols, having more antennae leads to faster communication.
(p) (1 point) __________ The 5Ghz wireless bands overlaps the fundamental frequency of water.

The following questions are on Ethernet.

(q) (1 point) __________ Gigabit Ethernet uses contention windows.
(r) (1 point) __________ Older frames have priority.
(s) (1 point) __________ A switch removes the idea of contention.
(t) (1 point) __________ Ethernet is full duplex.
4. This question is about OSPF. Consider the following link state packets:

Router A: B - 5, C - 1, D - 6, E - 4
Router B: A - 5, C - 2, D - 3, E - 1
Router C: A - 1, B - 2, D - 6, E - 3
Router D: A - 6, B - 3, C - 6, E - 6
Router E: A - 4, B - 1, C - 3, D - 6

(a) (2 points) Give the graph of the network (not the sink tree yet).

(b) (3 points) Give the sink tree of the network from node D.

(c) (1 point) In what order are the nodes expanded?

(d) (1 point) D sends data to E. What path does it take?
5. This question is about OSPF. Consider the following link state packets:

Router A: B - 14, C - 19, E - 9
Router B: A - 14, C - 16
Router C: A - 19, B - 16, D - 4
Router D: C - 4, E - 12, F - 14
Router E: A - 9, D - 12, F - 16
Router F: D - 14, E - 16

(a) (3 points) Give the graph of the network (not the sink tree yet).

(b) (5 points) Give the sink tree of the network from node E.

(c) (1 point) In what order are the nodes expanded?

(d) (1 point) E sends data to G. What path does it take?
6. The following question is about IPv4 addresses.

 (a) (2 points) Given the following IP addresses: 192.168.175.63 and 192.168.88.63, and a subnet mask of 255.255.120.0, are the two IP addresses on the same subnet?

 (b) (2 points) Given the following IP addresses: 39.27.80.23/18 and 39.27.96.23/18, are the two IP addresses on the same subnet?

 (c) (1 point) Some host has an IP address: 192.168.0.23/24. Is this a valid WAN address?

 (d) (2 points) Given the following IP addresses: 192.168.243.185/19, what is the network address?