CMPS 3480 Computer Graphics

Catalog Description

CMPS 3480 Computer Graphics

Introduction to computer graphics hardware, animation, two-dimensional transformations, basic concepts of computer graphics, theory and implementation. Use of graphics API's such as DirectX or OpenGL. Developing 2D graphics applications software. Each week lecture meets for 150 minutes and lab meets for 150 minutes. Prerequisite: CMPS 2020.

Prerequisite by Topic

Programming in C Object Oriented Programming Data Structures

Units and Contact Time

4 semester units. 3 units lecture (150 minutes), 1 unit lab (150 minutes).

Type

Required for Students of Computer Information Systems Track.

Required Textbook

Interactive Computer Graphics: A Top-Down Approach with Shader-Based OpenGL, 6/E, Edward Angel and Dave Shreiner, Addison-Wesley publication, ISBN-10: 0132545233 • ISBN-13: 9780132545235.

Recommended Textbook and Other Supplementary Material

None

Coordinator(s)

Arif Wani and Gordon Griesel.

Student Learning Outcomes

This one-semester first course is aimed at providing a firm foundation in Computer Graphics to both specialist and non-specialists undergraduates.

This course covers student learning outcomes falling under the following ACM/IEEE Body of Knowledge topics:

GV/Fundamental Concepts GV/Basic Rendering GV/Computer Animation

ABET Outcome Coverage

This course maps to the following performance indicators for Computer Science (CAC/ABET): CAC 3b with PIb1:

3b. An ability to analyze a problem, and identify and define the computing requirements and specifications appropriate to its solution.

PIb1.Identify key components and algorithms necessary for a solution.

CAC 3d with PId2:

3d. An ability to function effectively on teams to accomplish a common goal.

PId2. Listen and communicate with other team members.

CAC 3i with PIi1:

3i. An ability to use current techniques, skills, and tools necessary for computing practice. PIi1. Program in a suitable computer language.

Lecture Topics and Schedule

Week 1	Introduction to Computer Graphics Graphics Programming Frameworks	Chapter 1
	The Graphics Pipeline	~
Week 2	API Programming	Chapter 2
	XWindows, OpenGL	
Week 3	Graphics Programming	Chapter 2
	Raster Images and Functions	
	Color Models (RGB, HSL)	
Week 4	Line Drawing Algorithms	Chapter 6
	Bresenham's, DDA, Wu	
Week 5	Bresenham's Circle Drawing Algorithms	Chapter 6
	Parametric Shapes and Boundaries	
Week 6	Bresenham's Ellipse Drawing Algorithms	Chapter 6
	Curves and Splines	
Week 7	Orthographic Projections	Chapter 4
	Ray Casting	
	Vectors and Intersections	
Week 8	Perspective Projections	Chapter 4
	Ray Tracing Basics	1
Week 9	Transformations	Chapter 3
	Translation, Rotation, Scaling	1
Week 10	Transformations	Chapter 3
	The Rotation Matrix	1
	Kinematics	
Week 11	Clipping Algorithms	Chapter 6
	Cohen–Sutherland	1
	CSG - Constructive Solid Geometry	
Week 12	Filling Algorithms	Chapter 6
	Flood Fill	p
	Scanline Conversion	
Week 13	Hidden-Surface Removal	Chapter 6
	Painter's Algorithm	enup ver e
	Z-Buffer	
	Binary Space Partitioning	
Week 14	Lighting	Chapter 5
	Point and Directional Lights	Chapter 5
	Global Lighting, Photon Mapping	
	Subsurface Scattering	
Week 15	Shading	Chapter 5
WOOK 15	Surface Normals	Chapter 5
	Gouraud, Phong, Blinn-Phong	
	Reflection and Refraction	
	Reficulturi and Reffaction	

Design Content Description Not applicable to this course

Prepared By Arif Wani

<u>Approval</u>

Approved by CEE/CS Department on [date] Effective [term]